<abbr id="kc8ii"><menu id="kc8ii"></menu></abbr>
  • <input id="kc8ii"><tbody id="kc8ii"></tbody></input><table id="kc8ii"><source id="kc8ii"></source></table><kbd id="kc8ii"></kbd>
    <center id="kc8ii"><table id="kc8ii"></table></center>
  • <input id="kc8ii"></input>
    <abbr id="kc8ii"></abbr>
  • <abbr id="kc8ii"></abbr>
  • <center id="kc8ii"><table id="kc8ii"></table></center>
    <abbr id="kc8ii"></abbr>
    你的位置:首頁 > 傳感技術 > 正文

    檢測高階電流的各種技巧

    發布時間:2018-02-23 來源:Michael Dunn 責任編輯:wenwei

    【導讀】絕大多數直流電流檢測電路的核心設計思路,是從供電線路中的電阻下手。人們只需簡單地測量電阻兩端的電壓降,并根據需要調節阻值來讀取電流。如果檢測電阻在接地支路上,那么方案就是個簡單的運算放大電路…
     
    絕大多數直流電流檢測電路的核心設計思路,是從供電線路中的電阻下手(盡管磁場感應是個好選擇,尤其是在電流較高的情況下)。人們只需簡單地測量電阻兩端的電壓降,并根據需要調節阻值來讀取電流(E=I×R,如果不包含這個,有人會抱怨)。如果檢測電阻在接地支路上,那么方案就是個簡單的運算放大電路。一切都以地為參考,只需特別注意接地布局中的小電壓降就行了。
     
    檢測高階電流的各種技巧
    圖1 最明顯的高階電流檢測方案,使用差分放大器。
     
    但通常首選方法是將檢測電阻置于電源線中。為什么?因為接地可能不可行(例如,透過底盤接地汽車電子產品),或者你可能不希望設備接地與供電接地不同(這可能導致接地環路和其他問題)。那么,該怎么做?
     
    最顯而易見的方法是在檢測電阻兩端跨接一個差分或儀表放大器(inamp),但實際上這算不上好方法。為了準確檢測電流,通常需要極高的共模抑制(CMR),既昂貴又容易漂移。
     
    為什么這么說呢?來看一個設計示例:0~10A、12V標稱值、5mΩ的感測電阻。
     
    這種方案甚至都不需考慮使用分立電阻,除非它們是精密匹配網絡的一部分(因此,當然也就不是真正分立的)。對于1V的電源電壓偏移和80dB的差分放大器共模仰制比(CMRR),這意味著約0.01%的電阻匹配,你會看到相當于20mA的電流漂移(1V變化、80dB的CMRR導致輸入0.1mV偏移,再除以5mΩ檢測電阻的5mV/A標定)。
     
    對于0~12V電源,在電壓范圍內乘以12:電壓范圍內240mA的偏移電流。請注意,真正的三運算放大儀表放大器對電阻匹配的靈敏度比單運算放大差分放大器低。但是,通常有更好的方法。
     
    前文提到的「設計實例」使用了帶有分立電阻的單運算放大差分放大器。實際上,一個電阻可以用一個電位器進行調整,我最初認為它用于CMRR,結果卻是增益調整!如果電源電壓穩定,從某種意義上說,這種方法可行——但這絕不是一個好主意。
     
    第二種高階檢測方法需要一點橫向思維。我改變思想,用V+而不是地作參考軌。這在概念上就像是負電壓源的低端檢測,如果能擺平它,這就是個很好的方案。
     
    檢測高階電流的各種技巧
    圖2 以V+為參考,對輸出做進一步處理(例如,比較器)。R4可選,用于保護。
     
    第三種方法目前在IC方案中很常見,它用晶體管和運算放大器一起為電流測量提供地參考。當我想到倒置運算放大器時,并不知道這個設計,這可能是件好事,因為節省了一個晶體管。
     
    意法半導體(STMicroelectronics)、Maxim和亞德諾(ADI)都提供此類組件,但你自己也很容易實現這樣的電路。
     
    檢測高階電流的各種技巧
    圖3 ST的TSC103在回路中使用了一個BJT。
     
    檢測高階電流的各種技巧
    圖4 ADI的LTC6102使用一個MOSFET。
     
    LM13700這樣的OTA可以用作高階傳感器嗎?嗯…就把這個問題留給讀者諸君思考吧。
     
    本文轉載自EDN電子技術設計。
     
     
     
     
     
     
     
    推薦閱讀:



    在要求隔離SPI的應用中最大化性能和集成度
    穩定系統中慣性MEMS的頻率響應
    Acconeer 創新的 3D 傳感器技術現通過 Digi-Key 全球發售
    兩種簡單、精確、靈活的熱電偶溫度測量方法
    屏蔽電纜的作用是什么?
     
     
     
    要采購電線么,點這里了解一下價格!
    特別推薦
    技術文章更多>>
    技術白皮書下載更多>>
    熱門搜索
    ?

    關閉

    ?

    關閉

    国产aⅴ无码专区亚洲av| 中文字幕高清有码在线中字| 亚洲精品一级无码中文字幕 | 中文字幕欧美日韩在线不卡| 91精品日韩人妻无码久久不卡| 国精品无码一区二区三区左线 | 亚洲午夜无码久久久久小说| 亚洲?V无码乱码国产精品| 亚洲中文字幕无码久久2017| 中文在线天堂网WWW| yy111111少妇无码影院| 亚洲桃色AV无码| 精品三级AV无码一区| 中文字幕亚洲精品无码| AV无码久久久久不卡网站下载| 无码国产色欲XXXXX视频| 无码任你躁久久久久久老妇| 免费无码成人AV在线播放不卡 | 中文字幕手机在线视频| 超清无码无卡中文字幕| 国产在线拍偷自揄拍无码| 久久久无码一区二区三区| 成在人线av无码免费高潮喷水| 精品深夜AV无码一区二区老年| 人妻丰满AV无码久久不卡| 日日麻批免费40分钟无码| 亚洲动漫精品无码av天堂| 无码人妻精品中文字幕| 中文字幕乱码中文乱码51精品| 中文字幕色AV一区二区三区| 中文字幕热久久久久久久| √天堂中文www官网| 制服中文字幕一区二区| 韩国19禁无遮挡啪啪无码网站| 无码人妻黑人中文字幕| 天堂网在线最新版www中文网| 国产精品无码专区| 久久伊人中文无码| 无码国产精品一区二区免费模式 | 久久综合中文字幕| 大蕉久久伊人中文字幕|