-
電容電壓分隔器
電容器像電阻一樣反對電流流動,但與電阻器以熱的形式消散其不必要的能量,當電荷充電和釋放時,電容器將能量存儲在其板上,或者在放電時將能量歸還到連接的電路中。
2025-02-24
-
JFET 共源共柵提高了電流源性能
許多過程控制傳感器,例如熱敏電阻和應變計電橋,都需要的偏置電流。通過添加單個電流設置電阻器 R 1,您可以配置電壓參考電路 IC 1 以產生恒定且的電流源(圖 1 )。然而,信號源的誤差取決于 R 1 和 IC 1的精度 ,并影響測量精度和分辨率。盡管您可以指定精度超過常用電壓基準 IC 精度的高精度電阻,但基準電壓源的誤差決定了該電流源的精度。盡管制造商限度地降低了電壓基準的溫度敏感性和輸出電壓誤差,但對電源變化的敏感性可能會影響其精度,特別是在必須在較寬電源電壓范圍內運行的過程控制應用中。
2024-12-31
-
對比雙電源分立式和集成式儀表放大器
設計分立式儀表放大器 (IA) 與集成式 IA 的優點和缺點有很多,而且經常爭論不休。需要考慮的一些變量包括印刷電路板 (PCB) 面積、增益范圍、性能(隨溫度變化)和成本。本文的目的是比較三種雙電源 IA 電路:使用四路運算放大器 (op amp) 的分立式 IA、具有集成增益設置電阻器 (RG) 的通用 IA 和帶有外部 RG 的精密 IA。
2024-12-13
-
干貨 使用分流電阻器測量電流
分流電阻器是一種插入電路中測量電流的精密元件。在使用靈敏表頭測量電流的電流表中,將分流電阻器與表頭并聯,就可以將部分電流從表頭中“分流”出去。如今,一般通過將電阻器插入電路來進行“分流”,電阻器會相應地小幅降低電路中的電流電壓。然后可以使用電壓表或示波器測量該電壓降,并利用歐姆定律將測得的電壓除以電阻值,即可計算得出流經電路的電流。
2024-12-09
-
利用電容測試方法開創鍵合線檢測新天地
鍵合線廣泛應用于電子設備、半導體產業和微電子領域。它能夠將集成電路(IC)中的裸片與其他電子元器件(如晶體管和電阻器)進行連接。鍵合線可在芯片的鍵合焊盤與封裝基板或另一塊芯片的相應焊盤之間建立電氣連接。
2024-10-17
-
第4講:SiC的物理特性
SiC作為半導體功率器件材料,具有許多優異的特性。4H-SiC與Si、GaN的物理特性對比見表1。與Si相比,4H-SiC擁有10倍的擊穿電場強度,可實現高耐壓。與另一種寬禁帶半導體GaN相比,物理特性相似,但在p型器件導通控制和熱氧化工藝形成柵極氧化膜方面存在較大差異,4H-SiC在多用途功率MOS晶體管的制備方面具有優勢。此外,由于GaN是直接躍遷型半導體,少數載流子壽命較短,因此通過電導調制效應來實現低導通電阻器件的效果并不理想。
2024-09-11
-
開關模式電源問題分析及其糾正措施:檢測電阻器違規
本文是系列文章中的第二篇,該系列文章將討論常見的開關模式電源(SMPS)的設計問題及其糾正方案。本文旨在解決DC-DC開關穩壓器的反饋級設計中面臨的復雜難題,重點關注檢測電阻器(RSENSE)元件。RSENSE對于確保反饋網絡(負責維持輸出電壓)接收來自電感電流的準確信號而言至關重要。失真的信號可能會使電感紋波看起來比實際更大或更小,從而導致反饋網絡出現意外行為。
2024-09-10
-
電流測量分流電阻
大多數電流表都內置電阻器來測量電流。但是,當電流對于電流表來說太高時,需要不同的設置。解決方案是將電流表與的分流電阻器并聯。有時用于此類電阻器的另一個術語是電流表分流器。
2024-07-26
-
如何計算放大器的輸入電阻(通俗易懂)
單片差分放大器是集成電路,包含一個運算放大器(運放)以及不少于四個采用相同封裝的精密電阻器。對需要將差分信號轉換成單端信號同時抑制共模信號的模擬設計人員而言,它們是非常有用的構建塊。例如,圖1所示的INA134目的是用作適合差分音頻接口的線路接收器。
2024-04-15
-
發光二極管中的電阻器
當電流通過時,LED(發光二極管)就會發光。為 LED 供電的簡單電路是一個帶有串聯電阻和 LED 的電壓源。這種電阻器通常稱為鎮流電阻器。鎮流電阻用于限制通過 LED 的電流并防止電流過大而燒壞 LED。如果電壓源等于 LED 的壓降,則不需要電阻。LED 還可采用集成封裝,并配有用于 LED 操作的正確電阻器。
2024-03-11
-
使用分流電阻器增強電流感應以提高效率
電力電子集成系統帶來了許多優勢,例如提高效率、增強可靠性以及簡化設計和組裝。隨著各行業快速電氣化,對集成系統和模塊的需求不斷增加。碳化硅和氮化鎵晶體管(稱為寬帶隙 (WBG) 半導體)等先進功率半導體器件的出現,進一步推動了對集成解決方案的需求,以實現性能和成本效益。
2023-11-13
-
IGBT/MOSFET 的基本柵極驅動光耦合器設計
本應用筆記涵蓋了計算柵極驅動光耦合器 IC 的柵極驅動器功率和熱耗散的主題。柵極驅動光耦合器用于驅動、開啟和關閉功率半導體開關、MOSFET/IGBT。柵極驅動功率計算可分為三部分;驅動器內部電路中消耗或損失的功率、發送至功率半導體開關(IGBT/MOSFET)的功率以及驅動器IC和功率半導體開關之間的外部組件處(例如外部柵極電阻器上)損失的功率。在以下示例中,我們將討論使用 Avago ACPL-332J(2.5nApeak 智能柵極驅動器)的 IGBT 柵極驅動器設計。
2023-10-25
- 功率半導體驅動電源設計(一)綜述
- 借助集成高壓電阻隔離式放大器和調制器提高精度和性能
- 第 4 代碳化硅技術:重新定義高功率應用的性能和耐久性
- 揭秘:48V系統如何撬動汽車收益杠桿
- 超級電容器如何有效加強備用電源和負載管理 (上)
- 電阻,電動力和功率耗散
- 意法半導體為數據中心和AI集群帶來更高性能的云光互連技術
- 泰克自動化接收器測試方案,提升PCIe測試驗證精度與效率
- 利用與硬件無關的方法簡化嵌入式系統設計:基本知識
- 電容電壓分隔器
- 智能安防新時代,AI識別技術的革新應用方案
- 盤點電機控制器用到的主要電子元器件與實戰方案
- 車規與基于V2X的車輛協同主動避撞技術展望
- 數字隔離助力新能源汽車安全隔離的新挑戰
- 汽車模塊拋負載的解決方案
- 車用連接器的安全創新應用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall