<abbr id="kc8ii"><menu id="kc8ii"></menu></abbr>
  • <input id="kc8ii"><tbody id="kc8ii"></tbody></input><table id="kc8ii"><source id="kc8ii"></source></table><kbd id="kc8ii"></kbd>
    <center id="kc8ii"><table id="kc8ii"></table></center>
  • <input id="kc8ii"></input>
    <abbr id="kc8ii"></abbr>
  • <abbr id="kc8ii"></abbr>
  • <center id="kc8ii"><table id="kc8ii"></table></center>
    <abbr id="kc8ii"></abbr>
    你的位置:首頁 > RF/微波 > 正文

    濾波、接地、屏蔽、PCB布局四大視角看EMC設計

    發布時間:2019-06-14 責任編輯:lina

    【導讀】電磁干擾的主要方式是傳導干擾、輻射干擾、共阻抗耦合和感應耦合。對這幾種途徑產生的干擾我們應采用的相應對策:傳導采取濾波,輻射干擾采用屏蔽和接地等措施,就能夠大大提高產品的抵抗電磁干擾的能力,也可以有效的降低對外界的電磁干擾。
     
    電磁干擾的主要方式是傳導干擾、輻射干擾、共阻抗耦合和感應耦合。對這幾種途徑產生的干擾我們應采用的相應對策:傳導采取濾波,輻射干擾采用屏蔽和接地等措施,就能夠大大提高產品的抵抗電磁干擾的能力,也可以有效的降低對外界的電磁干擾。本文從濾波設計、接地設計、屏蔽設計和PCB布局布線技巧四個角度,介紹EMC的設計技巧。
     
    一、EMC濾波設計技巧
    EMC設計中的濾波器通常指由L,C構成的低通濾波器。濾波器結構的選擇是由"最大不匹配原則"決定的。即在任何濾波器中,電容兩端存在高阻抗,電感兩端存在低阻抗。圖1是利用最大不匹配原則得到的濾波器的結構與ZS和ZL的配合關系,每種情形給出了2種結構及相應的衰減斜率(n表示濾波器中電容元件和電感元件的總數)。
     
    濾波、接地、屏蔽、PCB布局四大視角看EMC設計
     
    其中:l和r分別為引線的長度和半徑。寄生電感會與電容產生串聯諧振,即自諧振,在自諧振頻率fo處,去耦電容呈現的阻抗最小,去耦效果最好。但對頻率f高于f/o的噪聲成份,去耦電容呈電感性,阻抗隨頻率的升高而變大,使去耦或旁路作用大大下降。實踐中,應根據噪聲的最高頻率fmax來選擇去耦電容的自諧振頻率f0,最佳取值為fo=fmax。
     
    去耦電容容量的選擇 在數字系統中,去耦電容的容量通常按下式估算:
     
    濾波、接地、屏蔽、PCB布局四大視角看EMC設計
     
    二、EMC接地設計
    接地是最有效的抑制騷擾源的方法,可解決50%的EMC問題。系統基準地與大地相連,可抑制電磁騷擾。外殼金屬件直接接大地,還可以提供靜電電荷的泄漏通路,防止靜電積累。
     
    在地線設計中應注意以下幾點:
     
    (1)正確選擇單點接地與多點接地 在低頻電路中,信號的工作頻率小于1MHz,它的布線和器件間的電感影響較小,而接地電路形成的環流對干擾影響較大,因而應采用單點接地。當信號工作頻率大于10MHz時,地線阻抗變得很大,此時應盡量降低地線阻抗,應采用就近多點接地。當工作頻率在1~10MHz時,如果采用一點接地,其地線長度不應超過波長的1/20,否則應采用多點接地法。 
     
    (2)將數字電路與模擬電路分開電路板上既有高速邏輯電路,又有線性電路,應使它們盡量分開,而兩者的地線不要相混,分別與電源端地線相連。要盡量加大線性電路的接地面積。 
     
    (3)盡量加粗接地線若接地線很細,接地電位則隨電流的變化而變化,致使電子設備的定時信號電平不穩,抗噪聲性能變壞。因此應將接地線盡量加粗,使它能通過三位于印制電路板的允許電流。如有可能,接地線的寬度應大于3mm。 
     
    (4)將接地線構成閉環路 設計只由數字電路組成的印制電路板的地線系統時,將接地線做成閉環路可以明顯的提高抗噪聲能力。其原因在于:印制電路板上有很多集成電路組件,尤其遇有耗電多的組件時,因受接地線粗細的限制,會在地結上產生較大的電位差,引起抗噪聲能力下降,若將接地結構成環路,則會縮小電位差值,提高電子設備的抗噪聲能力。
     
    三、EMC屏蔽設計
     
    屏蔽就是以金屬隔離的原理來控制某一區域的電場或磁場對另一區域的干擾。它包括兩個含義:一是將電路、電纜或整個系統的干擾源包圍起來,防止電磁干擾向外擴散;二是用屏蔽體將接收電路、設備或系統包圍起來,防止它們受到外界電磁干擾的影響。屏蔽按照機理可以分為電場屏蔽、磁場屏蔽、電磁場屏蔽三種不同方式。
     
    電場屏蔽電子設備中的電場通常是交變電場,因此可以將兩個系統間的電場感應認為是兩個系統之間分布電容Cj的耦合,如圖2所示。
     
    濾波、接地、屏蔽、PCB布局四大視角看EMC設計
     
    則接受器上的感應電壓為
    濾波、接地、屏蔽、PCB布局四大視角看EMC設計
     
    由此可知,要使接受器的感應電壓Us減小,Zp應盡可能的小。所以,屏蔽體必須選擇導電性能良好的材料,而且須有良好的接地。否則,因為Cl>Cj,C2>Cj,若屏蔽體的接地電阻較大,將使屏蔽體加入后造成的干擾反而變得更大。
     
    磁場屏蔽是指對低頻磁場和高頻磁場的屏蔽。
     
    低頻磁場的屏蔽采用高導磁率的鐵磁性材料。利用鐵磁性材料的高導磁率對干擾磁場進行分路,使通過空氣的磁通大為減少,從而降低對被干擾源的影響,起到磁場屏蔽的作用。由于是磁分路,所以屏蔽材料屏蔽材料 的磁導率U越高,屏蔽罩屏蔽罩越厚,磁分路流過的磁通越多,屏蔽效果越好。
     
    高頻磁場的屏蔽采用低電阻率的良導體作為屏蔽材料屏蔽材料。外界高頻磁場在屏蔽體中產生渦流,渦流形成的磁場抑制和抵消外界磁場,從而起到了屏蔽的作用。與低頻磁屏蔽不同,由于高頻渦流的趨膚效應,屏蔽體的尺寸并不是屏蔽效果的關鍵所在,而且屏蔽體接地與否和屏蔽效果也沒有關系。但對于高頻磁屏蔽的金屬良導體而言,若有良好的接地,則同時具備了電場屏蔽和磁場屏蔽的效果。所以,通常高頻磁屏蔽的屏蔽體也應接地。
     
    電磁場屏蔽電磁場屏蔽是利用屏蔽體對電場和磁場同時加以屏蔽,一般用來對高頻電磁場進行屏蔽。由前述可知,對于頻率較高的干擾電壓,選擇良導體制作屏蔽體,且有良好的接地,則可起到對電場和磁場同時進行屏蔽的效果。但是必須注意,對高頻磁場屏蔽的渦流不僅對外來干擾產生抵制作用,同時還可能對被屏蔽體保護的設備內部帶來不利的影響,從而產生新的干擾。
     
    四、PCB設計之布局布線策略
    1.選擇合理的導線寬度 由于瞬變電流在印制線條上所產生的沖擊干擾主要是由印制導線的電感成分造成的,因此應盡量減小印制導線的電感量。印制導線的電感量與其長度成正比,與其寬度成反比,因而短而精的導線對抑制干擾是有利的。時鐘引線、行驅動器或總線驅動器的信號線常常載有大的瞬變電流,印制導線要盡可能地短。對于分立組件電路,印制導線寬度在1.5mm左右時,即可完全滿足要求;對于集成電路,印制導線寬度可在0.2~1.0mm之間選擇。
     
    2.采用正確的布線策略 布線時需要注意的幾個方面:
    (1)保持環路面積最小,降低干擾對系統的影響,提高系統的抗干擾性能。并聯的導線緊緊放在一起,使用一條粗導線進行連接,信號線緊挨地平面布線可以降低干擾。電源與地之間增加高頻濾波電容。
    (2)使導線長度盡可能的縮短,減小印制板的面積,降低導線上的干擾。
    (3)采用完整的地平面設計,采用多層板設計,鋪設地層,便于干擾信號泄放。
    (4)使電子元件遠離可能會發生放電的平面如機箱面板、把手、螺釘等,保持機殼與地良好接觸,為干擾提供良好的泄放通道。對敏感信號包地處理,降低干擾。
    (5)盡量采用貼片元器件。
    (6)模擬地與數字地在PCB與外界連接處進行一點接地。
    (7)高速邏輯電路應靠近連接器邊緣,低速邏輯電路和存儲器則應布置在遠離連接器處,中速邏輯電路則布置在高速邏輯電路和低速邏輯電路之間。
    (8)電路板上的印制線寬度不要突變,拐角應采用圓弧形,不要直角或尖角。
    (9)時鐘線、信號線也盡可能靠近地線,并且走線不要過長,以減小回路的環面積。
     
    3.印制電路板的尺寸與器件的布置 印制電路板大小要適中,過大時印制線條長,阻抗增加,不僅抗噪聲能力下降,成本也高;過小,則散熱不好,同時易受臨近線條干擾。 在器件布置方面與其它邏輯電路一樣,應把相互有關的器件盡量放得靠近些,這樣可以獲得較好的抗噪聲效果。時鐘發生器、晶振和CPU的時鐘輸入端都易產生噪聲,要相互靠近些。易產生噪聲的器件、小電流電路、大電流電路等應盡量遠離邏輯電路,如有可能,應另做電路板。
     
     
     
     
    推薦閱讀:
    逆變電源在實際使用中的應用
    簡析開關電源中常用三類誤差放大器
    靈巧區別濾波、穩壓、比較、運放電路
    廣州國際線纜展與亞洲電力展盛大開幕
    德莎產品和生產流程工藝助力環境可持續發展
    要采購導線么,點這里了解一下價格!
    特別推薦
    技術文章更多>>
    技術白皮書下載更多>>
    熱門搜索
    ?

    關閉

    ?

    關閉

    亚洲精品一级无码中文字幕| 日韩人妻无码一区二区三区 | 特级做A爰片毛片免费看无码| AV无码久久久久不卡网站下载| 少妇无码AV无码一区| 久久ZYZ资源站无码中文动漫| AAA级久久久精品无码片| 亚洲韩国精品无码一区二区三区| 中文字幕在线看视频一区二区三区| 免费a级毛片无码| 国产亚洲人成无码网在线观看| 亚洲AV无码一区二区三区DV | 中文字幕一区二区精品区| 一本色道无码道在线| 成人无码一区二区三区| 无码久久精品国产亚洲Av影片| 中文有无人妻vs无码人妻激烈 | 亚洲熟妇无码八AV在线播放| 久久无码AV中文出轨人妻| 天堂а√中文最新版地址在线| 亚洲精品无码成人片在线观看 | 国产色爽免费无码视频| 日韩精品一区二三区中文| 日韩中文字幕一区| 亚洲中文字幕在线观看| 免费人妻无码不卡中文字幕系 | 日韩精品中文字幕第2页| 视频一区中文字幕| 视频二区中文字幕| 性无码专区一色吊丝中文字幕| 亚洲精品97久久中文字幕无码| 亚洲伊人久久综合中文成人网| 中文字幕精品久久| 最近的2019免费中文字幕| 久久久久久精品无码人妻| 中文字幕人妻无码一区二区三区 | 精品无码一区二区三区爱欲| 精品亚洲A∨无码一区二区三区| 99久久精品无码一区二区毛片| 特级小箩利无码毛片| 精品久久久中文字幕人妻|