<abbr id="kc8ii"><menu id="kc8ii"></menu></abbr>
  • <input id="kc8ii"><tbody id="kc8ii"></tbody></input><table id="kc8ii"><source id="kc8ii"></source></table><kbd id="kc8ii"></kbd>
    <center id="kc8ii"><table id="kc8ii"></table></center>
  • <input id="kc8ii"></input>
    <abbr id="kc8ii"></abbr>
  • <abbr id="kc8ii"></abbr>
  • <center id="kc8ii"><table id="kc8ii"></table></center>
    <abbr id="kc8ii"></abbr>
    你的位置:首頁 > RF/微波 > 正文

    阻抗匹配根本無法與孔徑調諧匹敵,原因何在?

    發布時間:2015-07-03 責任編輯:echolady

    【導讀】隨著智能手機的演變,智能手機需要不斷地優化技術來適應不斷增加的頻譜。而對于手機的LTE射頻,射頻必須能夠調頻,這就要求天線在所有頻帶上都具有高效率。本文就來探討阻抗匹配根本無法與孔徑調諧匹敵的原因。

    全球LTE智能手機的出貨量、網絡配置以及頻譜分配如今迅猛增長,而3GPP電信標準組織也已為LTE標準分配超過40個頻段。隨著用戶數和通信量 的負荷持續加重,諸如AT&T(美)和Verizon(美)的主要電信商開始采用LTE-Advanced 載波聚合(Carrier Aggregation)技術以提升網絡的速度和容量。3GPP現今已確定愈60種頻帶組合,其中包括頻帶內和頻帶間聚合。

    正因如此,智能手機需要優化技術以適應持續增加的頻譜分配方案和載波聚合的可能性。對手機內的LTE射頻而言,這意味著射頻必須能夠“調”這些頻帶當中的任何一個,而這進一步要求該天線需要在所有頻帶上保持高效率表現。

    但是說得容易做得難,天線效率的設計遠遠難過設定要求。在手機生產史的早期,天線是信號射頻系統設計師最后考慮的問題。早期手機體積大,數據率低,加 上全球只有4個頻帶。這些因素確保早期手機的高信號性能表現不成問題。而快進到2015年,隨著而大屏幕和大電池則成為主流,手機已經演進為精密的智能手 機。原設備制造商逐漸采用多種天線調諧技術以確保LTE在多頻帶上的信號表現。

    阻抗匹配根本無法與孔徑調諧匹敵,原因何在?
    圖1:手機的演進及相應的天線效率

    LTE射頻最關鍵的是射頻前端(RFFE),包括天線及模擬數據處理。RFFE中的功率放大器,濾波器以及電源轉化器經設計能夠在50歐—天線饋端(天線和RFFE連接處)的目標阻抗—以最高效率運作。

    天線饋端的天線阻抗取決于天線的類型。而移動設備生產中應用最廣泛的是雙波段PIFA天線。在諧振頻率中,天線的饋電點阻抗為純電阻(PIFA天線大 約 90Ω ,偶極子天線約72Ω ,而單極子天線約36 Ω ) 。為了最大限度地提高輻射效率, 利用簡單的固定匹配電路能將天線的阻抗匹配為50 Ω,借此提高輸入天線功率的輻射。

    阻抗匹配根本無法與孔徑調諧匹敵,原因何在?
    圖2:LTE射頻輻射前端(RFFE 或 Radio Frequency Front End) 結構圖

    業界如今有兩種截然不同的天線調諧方法

    可調式阻抗匹配調諧Tunable Impedance Matching (TIM)

    天線孔徑調諧Antenna Aperture Tuning (AAT)

    利用可調阻抗匹配的方法要求在天線和接收機/發射機之間植入可變匹配網絡 。隨著頻率轉變,天線的阻抗隨之改變,天線的阻抗需要調節回RFFE要求的50Ω 。這就需要一個閉環系統監測入射和反射功率或測量天線阻抗的實部和虛部。基于這些測量,匹配網絡的調諧元件會被調整,繼而形成新的天線饋電點阻抗以優化功 率傳遞。

    至于天線孔徑調諧技術,一個高Q值可變電容被放置在輻射元件的一個適當的位置。隨著頻率的變化的可變電容的負載會被動態調整,使得天線諧振頻率與工作 頻率相匹配。匹配諧振頻率與工作頻率有利于使天線的饋電點阻抗在整個工作范圍保持相對穩定,同時一個簡單的固定網絡將該阻抗匹配到的饋電點目標阻抗 50Ω,從而確保了調諧天線和RFFE之間最優化的功率傳輸。

    為了更好地理解的一個典型的PIFA天線的實現方法,作者將描繪其阻抗的實部和虛部,以及解釋它們是如何隨著頻率變化而改變。

    阻抗匹配根本無法與孔徑調諧匹敵,原因何在?
    圖3:PIFA在不同頻率中的阻抗表現

    圖3顯示的PIFA天線頻率被調節到920Mhz(頻帶B8),此時電抗盡可能接近0Ω而電容盡可能大,約90Ω。高電阻和低電感抗的組合直接導致良 好的輻射效率—天線調諧的最優狀態 。然而,如果 圖3中的PIFA天線在860MHz(頻帶B5)運作,可以發現電抗顯著增大至將近60Ω 。這天線組件的電感效應囤積而不輻射能量,從而降低了天線的運作效率。此外,該天線在頻帶B5運作時嚴重不匹配,降低了從饋線至低效率天線的功率傳遞。

    下文解釋兩種天線調諧方案是如何優化PIFA天線的表現的:

    天線孔徑調諧方案作用于改變可變電容的負載,將天線的諧振頻率與的工作頻率相匹配。諧振頻率的調整最大限度地降低天線的阻抗( 接近0Ω ),并最大化其電阻( 接近90Ω ) 。這使天線能在頻譜任何一處保持最佳表現,如圖3中虛線曲線所示。此外,具有小于0.3dB插入損耗的超低損耗射頻微電機系統(RF MEMS) 可變電容器現可用于天線孔徑調諧技術,進一步極盡利用天線的輻射,最小化功率損耗(被囤積在RFFE內)。

    可調阻抗匹配方案則測量天線的阻抗并調節饋線以匹配相應阻抗,介此優化從50Ω RFFE到天線呈現的可變負載的功率轉化。然而,阻抗匹配并不能避免天線的電抗特性,這特性使得天線囤積儲輻射而不能充分利用它。此外,可變阻抗匹配網絡 中最常使用的基于SOI或BST的元件會導致歐姆損耗并產生巨大的(>1dB)插入損耗,這進一步限制可調阻抗匹配的功率傳輸優化。

    這篇文章分析了如今最常見的兩種“天線調諧”技術。由此發現,孔徑調諧技術相比下展現了雙重優勢: 維持天線的諧振能力的同時同步防止饋電點不匹配。這性能可靠,高表現,以及低損耗的射頻微機電“調諧器”為射頻工程師和天線設計師提供高效天線和低成本 RFFE,以制造一流的智能手機射頻設備。

    相關閱讀:

    專家詳解:汽車門禁UHF模塊設計及阻抗匹配
    阻抗匹配與零歐電阻在PCB設計中發揮什么作用?
    阻抗匹配原理及負載阻抗匹配

    要采購射頻么,點這里了解一下價格!
    特別推薦
    技術文章更多>>
    技術白皮書下載更多>>
    熱門搜索
    ?

    關閉

    ?

    關閉

    亚洲日本欧美日韩中文字幕| 刺激无码在线观看精品视频| 亚洲欧美在线一区中文字幕| 国产成人综合日韩精品无码不卡| 亚洲AV无码日韩AV无码导航| 精品深夜AV无码一区二区| 丝袜熟女国偷自产中文字幕亚洲| 亚洲熟妇中文字幕五十中出| 亚洲熟妇无码AV在线播放| 超清无码无卡中文字幕| 中文字幕欧美日韩在线不卡| 无码专区—VA亚洲V天堂| 免费无码国产在线观国内自拍中文字幕| 午夜亚洲AV日韩AV无码大全| 日韩精品一区二三区中文 | 中文无码喷潮在线播放| 中文字幕乱偷无码AV先锋| 精品久久久久久无码中文野结衣| 最近2019免费中文字幕视频三| 中文无码精品一区二区三区| 亚洲热妇无码AV在线播放| 中文字幕亚洲男人的天堂网络 | 国产仑乱无码内谢| 久久久久亚洲AV无码永不| 亚洲av无码片vr一区二区三区 | 午夜福利无码不卡在线观看| 日本乱偷人妻中文字幕在线| 亚洲电影中文字幕| 精品久久久无码中文字幕 | 亚洲综合无码AV一区二区 | 亚洲精品无码久久久久去q| 国产亚洲精久久久久久无码77777 国产又爽又黄无码无遮挡在线观看 | 一本无码中文字幕在线观| 东京热人妻无码一区二区av| 亚洲欧洲精品无码AV| 少妇无码一区二区三区| 中文字幕久久精品| 久久亚洲日韩看片无码| 亚洲日韩激情无码一区| 人妻无码一区二区不卡无码av| 激情无码人妻又粗又大中国人|