<abbr id="kc8ii"><menu id="kc8ii"></menu></abbr>
  • <input id="kc8ii"><tbody id="kc8ii"></tbody></input><table id="kc8ii"><source id="kc8ii"></source></table><kbd id="kc8ii"></kbd>
    <center id="kc8ii"><table id="kc8ii"></table></center>
  • <input id="kc8ii"></input>
    <abbr id="kc8ii"></abbr>
  • <abbr id="kc8ii"></abbr>
  • <center id="kc8ii"><table id="kc8ii"></table></center>
    <abbr id="kc8ii"></abbr>
    你的位置:首頁 > 電源管理 > 正文

    如何消除步進電機的噪音和振動?

    發布時間:2023-08-21 責任編輯:lina

    【導讀】由于步進電機由于結構簡單、控制方便、安全性高、成本低、停止時候力矩大、在低速情況下不需 要減速機就可以輸出很大的力矩、相比直流無刷和伺服電機,步進電機不需要復雜的控制算法也不需要編碼器反饋情況下可以實現位置控制。


    步進電機的噪音來自哪里?

    由于步進電機由于結構簡單、控制方便、安全性高、成本低、停止時候力矩大、在低速情況下不需 要減速機就可以輸出很大的力矩、相比直流無刷和伺服電機,步進電機不需要復雜的控制算法也不需要編碼器反饋情況下可以實現位置控制。被用在很多要求精確定位的場合,基本上在很多需要移動控 制的場合都會用到步進電機如自動化控制、數字化生產如3D、醫療和光學等眾多領域。

    步進電機有一個缺點就是噪音比較大,特別是在低速的時候。震動主要來自兩個方面一是步進電 機的步距分辨率(步距階躍) 另一方面是來自斬波和脈寬調制(PWM) 的不良模式反應。

    步距角分辨率和細分

    典型的步進電機有50個極(Poles),就是200個整步(Full Steps),也就是整步情況下每步1.8° 角度,電機旋轉一周需要360°。但是也有些步進電機的步距角更小比如整步需要800步的。起初,這些步進電機被用作整步或者半步模式下,矢量電流提供給電機線圈A(藍色) 和線圈B(紅色) 矩形曲線圖。描述了整個一個周期360°的曲線。在圖3和圖4中很明顯看到電機線圈在90°換相點處線圈電流要 么是最大電流(full power) 要么是沒有電流。

    一個周期內(360°) 每組線圈由4個整步或者8個半步構成。也就是50個極的步進電機需要50個電 氣步距來完成一周的機械旋轉(360°) 。


    4-0.gif
    Figure 1: Full-step operation

    步進電機的噪音來自哪里?  由于步進電機由于結構簡單、控制方便、安全性高、成本低、停止時候力矩大、在低速情況下不需 要減速機就可以輸出很大的力矩、相比直流無刷和伺服電機,步進電機不需要復雜的控制算法也不需要編碼器反饋情況下可以實現位置控制。被用在很多要求精確定位的場合,基本上在很多需要移動控 制的場合都會用到步進電機如自動化控制、數字化生產如3D、醫療和光學等眾多領域。  步進電機有一個缺點就是噪音比較大,特別是在低速的時候。震動主要來自兩個方面一是步進電 機的步距分辨率(步距階躍) 另一方面是來自斬波和脈寬調制(PWM) 的不良模式反應。  步距角分辨率和細分  典型的步進電機有50個極(Poles),就是200個整步(Full Steps),也就是整步情況下每步1.8° 角度,電機旋轉一周需要360°。但是也有些步進電機的步距角更小比如整步需要800步的。起初,這些步進電機被用作整步或者半步模式下,矢量電流提供給電機線圈A(藍色) 和線圈B(紅色) 矩形曲線圖。描述了整個一個周期360°的曲線。在圖3和圖4中很明顯看到電機線圈在90°換相點處線圈電流要 么是最大電流(full power) 要么是沒有電流。  一個周期內(360°) 每組線圈由4個整步或者8個半步構成。也就是50個極的步進電機需要50個電 氣步距來完成一周的機械旋轉(360°) 。   Figure 1: Full-step operation   Figure 2: Half-step operation  低的步距分辨率模式比如半步或者整步是步進電機噪音的主要來源。會引起極大的震動在這個 機械系統中,尤其是在低速運行時和接近機械共振頻率的時候。在高速的時候,恰好由于慣量的存在 這個效應會被降低,電機的轉子可以為認為成諧波振蕩器或者彈簧鐘擺,如圖3。   Figure 3: Pendulum behavior of the rotor leads to vibrations  在新的矢量電流從驅動器端輸出之后,電機轉子會根據新的位置指令移動下一個整步或者半步的位置和脈搏反應相似在新的位置點周圍,轉子會產生超調和振蕩,如此一來會導致機械振動和噪音。為了減少這些震動,等步細分的原來被提了出來,將一個整步分割成更小的部分或者微步細分,典型的細分數是2(half-stepping) 、4(quarter-stepping) 、8、32甚至更大的細分。  電機定子線圈的電流并不是最大電流(Fullcurrent) 或者就是沒有電流,而是一個中間的電流 值,相比于4個整步電流(4 full steps) 更接近于一個正弦波形狀。永磁體的轉子位置處在2個整步位置之間(合成磁場位置) 。最大的細分數是由驅動器的A/D和D/A能力決定。TRINAMIC所提供的驅動 和控制器可以達到256細分(8bit) 采用集成的正弦波配置表格,步進電機可以實現非常小的角度控 制,圖4描述了在達到新位置時候的波動。   Figure 4: Reduction of motor vibrations when switching from full-step to high microstep resolutions  斬波和PWM模式  噪音和振動的另外一個來源是傳統的斬波方式和脈寬調制(PWM)模式,由于比較粗的步距分辨 率是產生振動和噪音的主要因素,我們通常忽視了斬波和PWM帶來的問題。  傳統的恒定PWM斬波模式是電流控制的PWM斬波模式,該模式在快速衰減和慢速衰減之間有 個固定關系,在其最大數值的時候,電流才會達到規定的目標電流,最終導致平均電流是小于預期目標電流的,如圖5所示。   Figure 5: Constant of-time (TOFF) PWM chopper mode: average current is not equal to target current  在一個完整的電周期內,電流方向改變時在正弦波過零處有個平穩過渡期,這個會影響在很短的 過渡期內線圈里面的電流為零,也就是電機此時根本就沒有力矩,這就導致了電機擺動和振動,尤其是在低速情況下。  相比恒定的斬波模式,TRINAMIC 的 SpreadCycle PWM 斬波模式在慢速和快速衰減器之間自動 配置一個磁滯衰減功能。平均電流反應了配置的正常電流,在正弦的過零點不會出現過渡期,這就減少電流和力矩的波動,是電流波形更加接近正弦波,相比傳統恒定斬波模式,SpreadCycle PWM斬波 模式控制下的電機運行得要平穩、平滑很多。  這一點在電機從靜止或低速到中速過程中非常重要。   Figure 6: Zero-crossing plateau with classic of-time chopper modes  Figure 7: SpreadCycle hysteresis chopper with clean zero crossing  如何使步進電機實現完全的靜音?  盡管高細分能解決大部分情況下的低頻震動;先進的電流控制PWM斬波模式比如TRINAMIC的 SpreadCycle算法,這些在硬件上的作用很大程度上減少震動和顫動,這也滿足了大部分的應用,也適 合高速運動。但是基于電流控制的斬波模式,還是會存在可聽得見的噪音和振動,主要是由于電機線圈的不同步,檢測電阻上幾毫伏的調節噪音和PWM時基誤差,這些噪音和振動在一些高端應用場合 也是不被允許的,緩慢運行或中速運動的應用,以及任何不允許有噪音和場合。  T R INA MI C 的Stea lt h Ch o p算法 也 是 通 過硬 件 來實現的,從根本上使 步 進電 機 靜 音,但 是 Stealthchop功能如何影響了步進電機?為什么電機不會出現噪音和震動?Stealthchop采用一種與基 于電流斬波模式如SpeadCycle完全不同的方法。而是采用基于電壓斬波模式一種新技術,該技術保證了電機的靜音和平穩平滑運動。  TMC5130?一款小體積,精巧的步進電機驅動控制芯片,帶有StealthChop模式。TRINAMIC改 進了電壓調節模式聯合了電流控制。為了最大限度降低電流波動,TMC5130采用基于電流反饋來控制電壓調制,這允許系統自適應電機的參數和運行電壓。來自直接電流控制回路算法引起的微小震蕩被消除。  圖8和圖9顯示 電壓控制模式的Stealthchop和電流控制模式的SpreadCycle。   Figure 8: Sine wave of one motor phase with voltage-controlled StealthChopTM  chopper mode   Figure 9: Sine wave of one motor phase with current-controlled SpreadCycleTM  chopper mode  StealthChop模式下過零點的效果是非常完美的:當電流的信號從正變為負或者負變為正,不會有 過渡區域而是持續性的穿過零點。因為電流的調制是根據PWM占空比來控制的。在50%的PWM占空比,電流是0,StealthChop調整PWM的占空比來調節電機電流,PWM頻率是個常數,與此相反電流控制的斬波器通過調控頻率實現調節電機電流,在這里電流的波動是比較大的,此外電流的波動會在電機的永磁體轉子里產生渦流,這會導致電機的功耗損失。  這些頻率變化著的PWM發出的聲音是在可聽范圍之內的,會發出嘶嘶的聲音,而且電子定子會 由于磁致伸縮產生更大的噪音,進而會傳遞引起機械系統的震動。而StealthChop的固定斬波頻率 就不會有這些問題。沒有斬波頻率的變化除了電機運行時候微步相序分配器的變化。  除了電機軸承鋼球磨擦的聲音,這是無法避免的之外,StealthChop可以驅動電機工作在極度 的靜音下,可以實現控制電機聲音在10dB分貝以下,噪音大大低于傳統的電流控制方式。我們從物理中得知 3dB分貝的減少量會將噪音程度降低一半。   Figure 10: Zoomed-in PWM view of both motor phases and coil current with voltage-controlled StealthChopTM  chopper mode   Figure 11: Zoomed-in PWM view of both motor phases and coil current with current-controlled SpreadCycleTM  chopper mode  對步進電機來說改變了什么?  如今步進電機還是一種十分經濟的電機,已經被應用了很多年,依舊采用和原來一樣的材料,一 樣的生產工序和裝配工藝。  但是相比過去,如今步進電機被更簡單的控制單元驅動,更先進的算法和更高度集成的微電子是 原來的電機發揮出更大的潛能。在接近電機的驅動電路中更多的信息被獲取和處理并實時在驅動電 流里被處理以優化電機控制,StealthChop便是一個完美的例子它的算法和PWM斬波緊密聯系,此外 這些信息還可以反饋到更高的應用控制層,而傳統的步進驅動方案都是單向的(脈沖/方向) ,所有 TRINAMIC的智能步進電機驅動方案都是雙向通訊,這些接口還可以監測不同狀態、診斷信息。這可 以增加系統的可靠性,提供系統的性能。  StealthChop靜音驅動技術非常適合3D打印、桌面型CNC、高端的CCTV、體外診斷設備、醫療檢 測設備等對噪音要求敏感的場合。  TRINAMIC提供帶有StealthChop功能的模塊,包括單軸、三軸和六軸驅控模塊。傳統的控制模 式下步進電機在低速情況下會出現比較大的噪音和震動,而在StealthChop模式下即使速度很低也聽不到明顯的聲音。  下載本文:如何消除步進電機的噪音和振動?
    Figure 2: Half-step operation


    低的步距分辨率模式比如半步或者整步是步進電機噪音的主要來源。會引起極大的震動在這個 機械系統中,尤其是在低速運行時和接近機械共振頻率的時候。在高速的時候,恰好由于慣量的存在 這個效應會被降低,電機的轉子可以為認為成諧波振蕩器或者彈簧鐘擺,如圖3。


    步進電機的噪音來自哪里?  由于步進電機由于結構簡單、控制方便、安全性高、成本低、停止時候力矩大、在低速情況下不需 要減速機就可以輸出很大的力矩、相比直流無刷和伺服電機,步進電機不需要復雜的控制算法也不需要編碼器反饋情況下可以實現位置控制。被用在很多要求精確定位的場合,基本上在很多需要移動控 制的場合都會用到步進電機如自動化控制、數字化生產如3D、醫療和光學等眾多領域。  步進電機有一個缺點就是噪音比較大,特別是在低速的時候。震動主要來自兩個方面一是步進電 機的步距分辨率(步距階躍) 另一方面是來自斬波和脈寬調制(PWM) 的不良模式反應。  步距角分辨率和細分  典型的步進電機有50個極(Poles),就是200個整步(Full Steps),也就是整步情況下每步1.8° 角度,電機旋轉一周需要360°。但是也有些步進電機的步距角更小比如整步需要800步的。起初,這些步進電機被用作整步或者半步模式下,矢量電流提供給電機線圈A(藍色) 和線圈B(紅色) 矩形曲線圖。描述了整個一個周期360°的曲線。在圖3和圖4中很明顯看到電機線圈在90°換相點處線圈電流要 么是最大電流(full power) 要么是沒有電流。  一個周期內(360°) 每組線圈由4個整步或者8個半步構成。也就是50個極的步進電機需要50個電 氣步距來完成一周的機械旋轉(360°) 。   Figure 1: Full-step operation   Figure 2: Half-step operation  低的步距分辨率模式比如半步或者整步是步進電機噪音的主要來源。會引起極大的震動在這個 機械系統中,尤其是在低速運行時和接近機械共振頻率的時候。在高速的時候,恰好由于慣量的存在 這個效應會被降低,電機的轉子可以為認為成諧波振蕩器或者彈簧鐘擺,如圖3。   Figure 3: Pendulum behavior of the rotor leads to vibrations  在新的矢量電流從驅動器端輸出之后,電機轉子會根據新的位置指令移動下一個整步或者半步的位置和脈搏反應相似在新的位置點周圍,轉子會產生超調和振蕩,如此一來會導致機械振動和噪音。為了減少這些震動,等步細分的原來被提了出來,將一個整步分割成更小的部分或者微步細分,典型的細分數是2(half-stepping) 、4(quarter-stepping) 、8、32甚至更大的細分。  電機定子線圈的電流并不是最大電流(Fullcurrent) 或者就是沒有電流,而是一個中間的電流 值,相比于4個整步電流(4 full steps) 更接近于一個正弦波形狀。永磁體的轉子位置處在2個整步位置之間(合成磁場位置) 。最大的細分數是由驅動器的A/D和D/A能力決定。TRINAMIC所提供的驅動 和控制器可以達到256細分(8bit) 采用集成的正弦波配置表格,步進電機可以實現非常小的角度控 制,圖4描述了在達到新位置時候的波動。   Figure 4: Reduction of motor vibrations when switching from full-step to high microstep resolutions  斬波和PWM模式  噪音和振動的另外一個來源是傳統的斬波方式和脈寬調制(PWM)模式,由于比較粗的步距分辨 率是產生振動和噪音的主要因素,我們通常忽視了斬波和PWM帶來的問題。  傳統的恒定PWM斬波模式是電流控制的PWM斬波模式,該模式在快速衰減和慢速衰減之間有 個固定關系,在其最大數值的時候,電流才會達到規定的目標電流,最終導致平均電流是小于預期目標電流的,如圖5所示。   Figure 5: Constant of-time (TOFF) PWM chopper mode: average current is not equal to target current  在一個完整的電周期內,電流方向改變時在正弦波過零處有個平穩過渡期,這個會影響在很短的 過渡期內線圈里面的電流為零,也就是電機此時根本就沒有力矩,這就導致了電機擺動和振動,尤其是在低速情況下。  相比恒定的斬波模式,TRINAMIC 的 SpreadCycle PWM 斬波模式在慢速和快速衰減器之間自動 配置一個磁滯衰減功能。平均電流反應了配置的正常電流,在正弦的過零點不會出現過渡期,這就減少電流和力矩的波動,是電流波形更加接近正弦波,相比傳統恒定斬波模式,SpreadCycle PWM斬波 模式控制下的電機運行得要平穩、平滑很多。  這一點在電機從靜止或低速到中速過程中非常重要。   Figure 6: Zero-crossing plateau with classic of-time chopper modes  Figure 7: SpreadCycle hysteresis chopper with clean zero crossing  如何使步進電機實現完全的靜音?  盡管高細分能解決大部分情況下的低頻震動;先進的電流控制PWM斬波模式比如TRINAMIC的 SpreadCycle算法,這些在硬件上的作用很大程度上減少震動和顫動,這也滿足了大部分的應用,也適 合高速運動。但是基于電流控制的斬波模式,還是會存在可聽得見的噪音和振動,主要是由于電機線圈的不同步,檢測電阻上幾毫伏的調節噪音和PWM時基誤差,這些噪音和振動在一些高端應用場合 也是不被允許的,緩慢運行或中速運動的應用,以及任何不允許有噪音和場合。  T R INA MI C 的Stea lt h Ch o p算法 也 是 通 過硬 件 來實現的,從根本上使 步 進電 機 靜 音,但 是 Stealthchop功能如何影響了步進電機?為什么電機不會出現噪音和震動?Stealthchop采用一種與基 于電流斬波模式如SpeadCycle完全不同的方法。而是采用基于電壓斬波模式一種新技術,該技術保證了電機的靜音和平穩平滑運動。  TMC5130?一款小體積,精巧的步進電機驅動控制芯片,帶有StealthChop模式。TRINAMIC改 進了電壓調節模式聯合了電流控制。為了最大限度降低電流波動,TMC5130采用基于電流反饋來控制電壓調制,這允許系統自適應電機的參數和運行電壓。來自直接電流控制回路算法引起的微小震蕩被消除。  圖8和圖9顯示 電壓控制模式的Stealthchop和電流控制模式的SpreadCycle。   Figure 8: Sine wave of one motor phase with voltage-controlled StealthChopTM  chopper mode   Figure 9: Sine wave of one motor phase with current-controlled SpreadCycleTM  chopper mode  StealthChop模式下過零點的效果是非常完美的:當電流的信號從正變為負或者負變為正,不會有 過渡區域而是持續性的穿過零點。因為電流的調制是根據PWM占空比來控制的。在50%的PWM占空比,電流是0,StealthChop調整PWM的占空比來調節電機電流,PWM頻率是個常數,與此相反電流控制的斬波器通過調控頻率實現調節電機電流,在這里電流的波動是比較大的,此外電流的波動會在電機的永磁體轉子里產生渦流,這會導致電機的功耗損失。  這些頻率變化著的PWM發出的聲音是在可聽范圍之內的,會發出嘶嘶的聲音,而且電子定子會 由于磁致伸縮產生更大的噪音,進而會傳遞引起機械系統的震動。而StealthChop的固定斬波頻率 就不會有這些問題。沒有斬波頻率的變化除了電機運行時候微步相序分配器的變化。  除了電機軸承鋼球磨擦的聲音,這是無法避免的之外,StealthChop可以驅動電機工作在極度 的靜音下,可以實現控制電機聲音在10dB分貝以下,噪音大大低于傳統的電流控制方式。我們從物理中得知 3dB分貝的減少量會將噪音程度降低一半。   Figure 10: Zoomed-in PWM view of both motor phases and coil current with voltage-controlled StealthChopTM  chopper mode   Figure 11: Zoomed-in PWM view of both motor phases and coil current with current-controlled SpreadCycleTM  chopper mode  對步進電機來說改變了什么?  如今步進電機還是一種十分經濟的電機,已經被應用了很多年,依舊采用和原來一樣的材料,一 樣的生產工序和裝配工藝。  但是相比過去,如今步進電機被更簡單的控制單元驅動,更先進的算法和更高度集成的微電子是 原來的電機發揮出更大的潛能。在接近電機的驅動電路中更多的信息被獲取和處理并實時在驅動電 流里被處理以優化電機控制,StealthChop便是一個完美的例子它的算法和PWM斬波緊密聯系,此外 這些信息還可以反饋到更高的應用控制層,而傳統的步進驅動方案都是單向的(脈沖/方向) ,所有 TRINAMIC的智能步進電機驅動方案都是雙向通訊,這些接口還可以監測不同狀態、診斷信息。這可 以增加系統的可靠性,提供系統的性能。  StealthChop靜音驅動技術非常適合3D打印、桌面型CNC、高端的CCTV、體外診斷設備、醫療檢 測設備等對噪音要求敏感的場合。  TRINAMIC提供帶有StealthChop功能的模塊,包括單軸、三軸和六軸驅控模塊。傳統的控制模 式下步進電機在低速情況下會出現比較大的噪音和震動,而在StealthChop模式下即使速度很低也聽不到明顯的聲音。  下載本文:如何消除步進電機的噪音和振動?
    Figure 3: Pendulum behavior of the rotor leads to vibrations


    在新的矢量電流從驅動器端輸出之后,電機轉子會根據新的位置指令移動下一個整步或者半步的位置和脈搏反應相似在新的位置點周圍,轉子會產生超調和振蕩,如此一來會導致機械振動和噪音。為了減少這些震動,等步細分的原來被提了出來,將一個整步分割成更小的部分或者微步細分,典型的細分數是2(half-stepping) 、4(quarter-stepping) 、8、32甚至更大的細分。

    電機定子線圈的電流并不是最大電流(Fullcurrent) 或者就是沒有電流,而是一個中間的電流 值,相比于4個整步電流(4 full steps) 更接近于一個正弦波形狀。永磁體的轉子位置處在2個整步位置之間(合成磁場位置) 。最大的細分數是由驅動器的A/D和D/A能力決定。TRINAMIC所提供的驅動 和控制器可以達到256細分(8bit) 采用集成的正弦波配置表格,步進電機可以實現非常小的角度控 制,圖4描述了在達到新位置時候的波動。


    步進電機的噪音來自哪里?  由于步進電機由于結構簡單、控制方便、安全性高、成本低、停止時候力矩大、在低速情況下不需 要減速機就可以輸出很大的力矩、相比直流無刷和伺服電機,步進電機不需要復雜的控制算法也不需要編碼器反饋情況下可以實現位置控制。被用在很多要求精確定位的場合,基本上在很多需要移動控 制的場合都會用到步進電機如自動化控制、數字化生產如3D、醫療和光學等眾多領域。  步進電機有一個缺點就是噪音比較大,特別是在低速的時候。震動主要來自兩個方面一是步進電 機的步距分辨率(步距階躍) 另一方面是來自斬波和脈寬調制(PWM) 的不良模式反應。  步距角分辨率和細分  典型的步進電機有50個極(Poles),就是200個整步(Full Steps),也就是整步情況下每步1.8° 角度,電機旋轉一周需要360°。但是也有些步進電機的步距角更小比如整步需要800步的。起初,這些步進電機被用作整步或者半步模式下,矢量電流提供給電機線圈A(藍色) 和線圈B(紅色) 矩形曲線圖。描述了整個一個周期360°的曲線。在圖3和圖4中很明顯看到電機線圈在90°換相點處線圈電流要 么是最大電流(full power) 要么是沒有電流。  一個周期內(360°) 每組線圈由4個整步或者8個半步構成。也就是50個極的步進電機需要50個電 氣步距來完成一周的機械旋轉(360°) 。   Figure 1: Full-step operation   Figure 2: Half-step operation  低的步距分辨率模式比如半步或者整步是步進電機噪音的主要來源。會引起極大的震動在這個 機械系統中,尤其是在低速運行時和接近機械共振頻率的時候。在高速的時候,恰好由于慣量的存在 這個效應會被降低,電機的轉子可以為認為成諧波振蕩器或者彈簧鐘擺,如圖3。   Figure 3: Pendulum behavior of the rotor leads to vibrations  在新的矢量電流從驅動器端輸出之后,電機轉子會根據新的位置指令移動下一個整步或者半步的位置和脈搏反應相似在新的位置點周圍,轉子會產生超調和振蕩,如此一來會導致機械振動和噪音。為了減少這些震動,等步細分的原來被提了出來,將一個整步分割成更小的部分或者微步細分,典型的細分數是2(half-stepping) 、4(quarter-stepping) 、8、32甚至更大的細分。  電機定子線圈的電流并不是最大電流(Fullcurrent) 或者就是沒有電流,而是一個中間的電流 值,相比于4個整步電流(4 full steps) 更接近于一個正弦波形狀。永磁體的轉子位置處在2個整步位置之間(合成磁場位置) 。最大的細分數是由驅動器的A/D和D/A能力決定。TRINAMIC所提供的驅動 和控制器可以達到256細分(8bit) 采用集成的正弦波配置表格,步進電機可以實現非常小的角度控 制,圖4描述了在達到新位置時候的波動。   Figure 4: Reduction of motor vibrations when switching from full-step to high microstep resolutions  斬波和PWM模式  噪音和振動的另外一個來源是傳統的斬波方式和脈寬調制(PWM)模式,由于比較粗的步距分辨 率是產生振動和噪音的主要因素,我們通常忽視了斬波和PWM帶來的問題。  傳統的恒定PWM斬波模式是電流控制的PWM斬波模式,該模式在快速衰減和慢速衰減之間有 個固定關系,在其最大數值的時候,電流才會達到規定的目標電流,最終導致平均電流是小于預期目標電流的,如圖5所示。   Figure 5: Constant of-time (TOFF) PWM chopper mode: average current is not equal to target current  在一個完整的電周期內,電流方向改變時在正弦波過零處有個平穩過渡期,這個會影響在很短的 過渡期內線圈里面的電流為零,也就是電機此時根本就沒有力矩,這就導致了電機擺動和振動,尤其是在低速情況下。  相比恒定的斬波模式,TRINAMIC 的 SpreadCycle PWM 斬波模式在慢速和快速衰減器之間自動 配置一個磁滯衰減功能。平均電流反應了配置的正常電流,在正弦的過零點不會出現過渡期,這就減少電流和力矩的波動,是電流波形更加接近正弦波,相比傳統恒定斬波模式,SpreadCycle PWM斬波 模式控制下的電機運行得要平穩、平滑很多。  這一點在電機從靜止或低速到中速過程中非常重要。   Figure 6: Zero-crossing plateau with classic of-time chopper modes  Figure 7: SpreadCycle hysteresis chopper with clean zero crossing  如何使步進電機實現完全的靜音?  盡管高細分能解決大部分情況下的低頻震動;先進的電流控制PWM斬波模式比如TRINAMIC的 SpreadCycle算法,這些在硬件上的作用很大程度上減少震動和顫動,這也滿足了大部分的應用,也適 合高速運動。但是基于電流控制的斬波模式,還是會存在可聽得見的噪音和振動,主要是由于電機線圈的不同步,檢測電阻上幾毫伏的調節噪音和PWM時基誤差,這些噪音和振動在一些高端應用場合 也是不被允許的,緩慢運行或中速運動的應用,以及任何不允許有噪音和場合。  T R INA MI C 的Stea lt h Ch o p算法 也 是 通 過硬 件 來實現的,從根本上使 步 進電 機 靜 音,但 是 Stealthchop功能如何影響了步進電機?為什么電機不會出現噪音和震動?Stealthchop采用一種與基 于電流斬波模式如SpeadCycle完全不同的方法。而是采用基于電壓斬波模式一種新技術,該技術保證了電機的靜音和平穩平滑運動。  TMC5130?一款小體積,精巧的步進電機驅動控制芯片,帶有StealthChop模式。TRINAMIC改 進了電壓調節模式聯合了電流控制。為了最大限度降低電流波動,TMC5130采用基于電流反饋來控制電壓調制,這允許系統自適應電機的參數和運行電壓。來自直接電流控制回路算法引起的微小震蕩被消除。  圖8和圖9顯示 電壓控制模式的Stealthchop和電流控制模式的SpreadCycle。   Figure 8: Sine wave of one motor phase with voltage-controlled StealthChopTM  chopper mode   Figure 9: Sine wave of one motor phase with current-controlled SpreadCycleTM  chopper mode  StealthChop模式下過零點的效果是非常完美的:當電流的信號從正變為負或者負變為正,不會有 過渡區域而是持續性的穿過零點。因為電流的調制是根據PWM占空比來控制的。在50%的PWM占空比,電流是0,StealthChop調整PWM的占空比來調節電機電流,PWM頻率是個常數,與此相反電流控制的斬波器通過調控頻率實現調節電機電流,在這里電流的波動是比較大的,此外電流的波動會在電機的永磁體轉子里產生渦流,這會導致電機的功耗損失。  這些頻率變化著的PWM發出的聲音是在可聽范圍之內的,會發出嘶嘶的聲音,而且電子定子會 由于磁致伸縮產生更大的噪音,進而會傳遞引起機械系統的震動。而StealthChop的固定斬波頻率 就不會有這些問題。沒有斬波頻率的變化除了電機運行時候微步相序分配器的變化。  除了電機軸承鋼球磨擦的聲音,這是無法避免的之外,StealthChop可以驅動電機工作在極度 的靜音下,可以實現控制電機聲音在10dB分貝以下,噪音大大低于傳統的電流控制方式。我們從物理中得知 3dB分貝的減少量會將噪音程度降低一半。   Figure 10: Zoomed-in PWM view of both motor phases and coil current with voltage-controlled StealthChopTM  chopper mode   Figure 11: Zoomed-in PWM view of both motor phases and coil current with current-controlled SpreadCycleTM  chopper mode  對步進電機來說改變了什么?  如今步進電機還是一種十分經濟的電機,已經被應用了很多年,依舊采用和原來一樣的材料,一 樣的生產工序和裝配工藝。  但是相比過去,如今步進電機被更簡單的控制單元驅動,更先進的算法和更高度集成的微電子是 原來的電機發揮出更大的潛能。在接近電機的驅動電路中更多的信息被獲取和處理并實時在驅動電 流里被處理以優化電機控制,StealthChop便是一個完美的例子它的算法和PWM斬波緊密聯系,此外 這些信息還可以反饋到更高的應用控制層,而傳統的步進驅動方案都是單向的(脈沖/方向) ,所有 TRINAMIC的智能步進電機驅動方案都是雙向通訊,這些接口還可以監測不同狀態、診斷信息。這可 以增加系統的可靠性,提供系統的性能。  StealthChop靜音驅動技術非常適合3D打印、桌面型CNC、高端的CCTV、體外診斷設備、醫療檢 測設備等對噪音要求敏感的場合。  TRINAMIC提供帶有StealthChop功能的模塊,包括單軸、三軸和六軸驅控模塊。傳統的控制模 式下步進電機在低速情況下會出現比較大的噪音和震動,而在StealthChop模式下即使速度很低也聽不到明顯的聲音。  下載本文:如何消除步進電機的噪音和振動?
    Figure 4: Reduction of motor vibrations when switching from full-step

    to high microstep resolutions


    斬波和PWM模式

    噪音和振動的另外一個來源是傳統的斬波方式和脈寬調制(PWM)模式,由于比較粗的步距分辨 率是產生振動和噪音的主要因素,我們通常忽視了斬波和PWM帶來的問題。

    傳統的恒定PWM斬波模式是電流控制的PWM斬波模式,該模式在快速衰減和慢速衰減之間有 個固定關系,在其最大數值的時候,電流才會達到規定的目標電流,最終導致平均電流是小于預期目標電流的,如圖5所示。


    步進電機的噪音來自哪里?  由于步進電機由于結構簡單、控制方便、安全性高、成本低、停止時候力矩大、在低速情況下不需 要減速機就可以輸出很大的力矩、相比直流無刷和伺服電機,步進電機不需要復雜的控制算法也不需要編碼器反饋情況下可以實現位置控制。被用在很多要求精確定位的場合,基本上在很多需要移動控 制的場合都會用到步進電機如自動化控制、數字化生產如3D、醫療和光學等眾多領域。  步進電機有一個缺點就是噪音比較大,特別是在低速的時候。震動主要來自兩個方面一是步進電 機的步距分辨率(步距階躍) 另一方面是來自斬波和脈寬調制(PWM) 的不良模式反應。  步距角分辨率和細分  典型的步進電機有50個極(Poles),就是200個整步(Full Steps),也就是整步情況下每步1.8° 角度,電機旋轉一周需要360°。但是也有些步進電機的步距角更小比如整步需要800步的。起初,這些步進電機被用作整步或者半步模式下,矢量電流提供給電機線圈A(藍色) 和線圈B(紅色) 矩形曲線圖。描述了整個一個周期360°的曲線。在圖3和圖4中很明顯看到電機線圈在90°換相點處線圈電流要 么是最大電流(full power) 要么是沒有電流。  一個周期內(360°) 每組線圈由4個整步或者8個半步構成。也就是50個極的步進電機需要50個電 氣步距來完成一周的機械旋轉(360°) 。   Figure 1: Full-step operation   Figure 2: Half-step operation  低的步距分辨率模式比如半步或者整步是步進電機噪音的主要來源。會引起極大的震動在這個 機械系統中,尤其是在低速運行時和接近機械共振頻率的時候。在高速的時候,恰好由于慣量的存在 這個效應會被降低,電機的轉子可以為認為成諧波振蕩器或者彈簧鐘擺,如圖3。   Figure 3: Pendulum behavior of the rotor leads to vibrations  在新的矢量電流從驅動器端輸出之后,電機轉子會根據新的位置指令移動下一個整步或者半步的位置和脈搏反應相似在新的位置點周圍,轉子會產生超調和振蕩,如此一來會導致機械振動和噪音。為了減少這些震動,等步細分的原來被提了出來,將一個整步分割成更小的部分或者微步細分,典型的細分數是2(half-stepping) 、4(quarter-stepping) 、8、32甚至更大的細分。  電機定子線圈的電流并不是最大電流(Fullcurrent) 或者就是沒有電流,而是一個中間的電流 值,相比于4個整步電流(4 full steps) 更接近于一個正弦波形狀。永磁體的轉子位置處在2個整步位置之間(合成磁場位置) 。最大的細分數是由驅動器的A/D和D/A能力決定。TRINAMIC所提供的驅動 和控制器可以達到256細分(8bit) 采用集成的正弦波配置表格,步進電機可以實現非常小的角度控 制,圖4描述了在達到新位置時候的波動。   Figure 4: Reduction of motor vibrations when switching from full-step to high microstep resolutions  斬波和PWM模式  噪音和振動的另外一個來源是傳統的斬波方式和脈寬調制(PWM)模式,由于比較粗的步距分辨 率是產生振動和噪音的主要因素,我們通常忽視了斬波和PWM帶來的問題。  傳統的恒定PWM斬波模式是電流控制的PWM斬波模式,該模式在快速衰減和慢速衰減之間有 個固定關系,在其最大數值的時候,電流才會達到規定的目標電流,最終導致平均電流是小于預期目標電流的,如圖5所示。   Figure 5: Constant of-time (TOFF) PWM chopper mode: average current is not equal to target current  在一個完整的電周期內,電流方向改變時在正弦波過零處有個平穩過渡期,這個會影響在很短的 過渡期內線圈里面的電流為零,也就是電機此時根本就沒有力矩,這就導致了電機擺動和振動,尤其是在低速情況下。  相比恒定的斬波模式,TRINAMIC 的 SpreadCycle PWM 斬波模式在慢速和快速衰減器之間自動 配置一個磁滯衰減功能。平均電流反應了配置的正常電流,在正弦的過零點不會出現過渡期,這就減少電流和力矩的波動,是電流波形更加接近正弦波,相比傳統恒定斬波模式,SpreadCycle PWM斬波 模式控制下的電機運行得要平穩、平滑很多。  這一點在電機從靜止或低速到中速過程中非常重要。   Figure 6: Zero-crossing plateau with classic of-time chopper modes  Figure 7: SpreadCycle hysteresis chopper with clean zero crossing  如何使步進電機實現完全的靜音?  盡管高細分能解決大部分情況下的低頻震動;先進的電流控制PWM斬波模式比如TRINAMIC的 SpreadCycle算法,這些在硬件上的作用很大程度上減少震動和顫動,這也滿足了大部分的應用,也適 合高速運動。但是基于電流控制的斬波模式,還是會存在可聽得見的噪音和振動,主要是由于電機線圈的不同步,檢測電阻上幾毫伏的調節噪音和PWM時基誤差,這些噪音和振動在一些高端應用場合 也是不被允許的,緩慢運行或中速運動的應用,以及任何不允許有噪音和場合。  T R INA MI C 的Stea lt h Ch o p算法 也 是 通 過硬 件 來實現的,從根本上使 步 進電 機 靜 音,但 是 Stealthchop功能如何影響了步進電機?為什么電機不會出現噪音和震動?Stealthchop采用一種與基 于電流斬波模式如SpeadCycle完全不同的方法。而是采用基于電壓斬波模式一種新技術,該技術保證了電機的靜音和平穩平滑運動。  TMC5130?一款小體積,精巧的步進電機驅動控制芯片,帶有StealthChop模式。TRINAMIC改 進了電壓調節模式聯合了電流控制。為了最大限度降低電流波動,TMC5130采用基于電流反饋來控制電壓調制,這允許系統自適應電機的參數和運行電壓。來自直接電流控制回路算法引起的微小震蕩被消除。  圖8和圖9顯示 電壓控制模式的Stealthchop和電流控制模式的SpreadCycle。   Figure 8: Sine wave of one motor phase with voltage-controlled StealthChopTM  chopper mode   Figure 9: Sine wave of one motor phase with current-controlled SpreadCycleTM  chopper mode  StealthChop模式下過零點的效果是非常完美的:當電流的信號從正變為負或者負變為正,不會有 過渡區域而是持續性的穿過零點。因為電流的調制是根據PWM占空比來控制的。在50%的PWM占空比,電流是0,StealthChop調整PWM的占空比來調節電機電流,PWM頻率是個常數,與此相反電流控制的斬波器通過調控頻率實現調節電機電流,在這里電流的波動是比較大的,此外電流的波動會在電機的永磁體轉子里產生渦流,這會導致電機的功耗損失。  這些頻率變化著的PWM發出的聲音是在可聽范圍之內的,會發出嘶嘶的聲音,而且電子定子會 由于磁致伸縮產生更大的噪音,進而會傳遞引起機械系統的震動。而StealthChop的固定斬波頻率 就不會有這些問題。沒有斬波頻率的變化除了電機運行時候微步相序分配器的變化。  除了電機軸承鋼球磨擦的聲音,這是無法避免的之外,StealthChop可以驅動電機工作在極度 的靜音下,可以實現控制電機聲音在10dB分貝以下,噪音大大低于傳統的電流控制方式。我們從物理中得知 3dB分貝的減少量會將噪音程度降低一半。   Figure 10: Zoomed-in PWM view of both motor phases and coil current with voltage-controlled StealthChopTM  chopper mode   Figure 11: Zoomed-in PWM view of both motor phases and coil current with current-controlled SpreadCycleTM  chopper mode  對步進電機來說改變了什么?  如今步進電機還是一種十分經濟的電機,已經被應用了很多年,依舊采用和原來一樣的材料,一 樣的生產工序和裝配工藝。  但是相比過去,如今步進電機被更簡單的控制單元驅動,更先進的算法和更高度集成的微電子是 原來的電機發揮出更大的潛能。在接近電機的驅動電路中更多的信息被獲取和處理并實時在驅動電 流里被處理以優化電機控制,StealthChop便是一個完美的例子它的算法和PWM斬波緊密聯系,此外 這些信息還可以反饋到更高的應用控制層,而傳統的步進驅動方案都是單向的(脈沖/方向) ,所有 TRINAMIC的智能步進電機驅動方案都是雙向通訊,這些接口還可以監測不同狀態、診斷信息。這可 以增加系統的可靠性,提供系統的性能。  StealthChop靜音驅動技術非常適合3D打印、桌面型CNC、高端的CCTV、體外診斷設備、醫療檢 測設備等對噪音要求敏感的場合。  TRINAMIC提供帶有StealthChop功能的模塊,包括單軸、三軸和六軸驅控模塊。傳統的控制模 式下步進電機在低速情況下會出現比較大的噪音和震動,而在StealthChop模式下即使速度很低也聽不到明顯的聲音。  下載本文:如何消除步進電機的噪音和振動?
    Figure 5: Constant of-time (TOFF) PWM chopper mode: average current is
    not equal to target current


    在一個完整的電周期內,電流方向改變時在正弦波過零處有個平穩過渡期,這個會影響在很短的 過渡期內線圈里面的電流為零,也就是電機此時根本就沒有力矩,這就導致了電機擺動和振動,尤其是在低速情況下。

    相比恒定的斬波模式,TRINAMIC 的 SpreadCycle PWM 斬波模式在慢速和快速衰減器之間自動 配置一個磁滯衰減功能。平均電流反應了配置的正常電流,在正弦的過零點不會出現過渡期,這就減少電流和力矩的波動,是電流波形更加接近正弦波,相比傳統恒定斬波模式,SpreadCycle PWM斬波 模式控制下的電機運行得要平穩、平滑很多。

    這一點在電機從靜止或低速到中速過程中非常重要。


    步進電機的噪音來自哪里?  由于步進電機由于結構簡單、控制方便、安全性高、成本低、停止時候力矩大、在低速情況下不需 要減速機就可以輸出很大的力矩、相比直流無刷和伺服電機,步進電機不需要復雜的控制算法也不需要編碼器反饋情況下可以實現位置控制。被用在很多要求精確定位的場合,基本上在很多需要移動控 制的場合都會用到步進電機如自動化控制、數字化生產如3D、醫療和光學等眾多領域。  步進電機有一個缺點就是噪音比較大,特別是在低速的時候。震動主要來自兩個方面一是步進電 機的步距分辨率(步距階躍) 另一方面是來自斬波和脈寬調制(PWM) 的不良模式反應。  步距角分辨率和細分  典型的步進電機有50個極(Poles),就是200個整步(Full Steps),也就是整步情況下每步1.8° 角度,電機旋轉一周需要360°。但是也有些步進電機的步距角更小比如整步需要800步的。起初,這些步進電機被用作整步或者半步模式下,矢量電流提供給電機線圈A(藍色) 和線圈B(紅色) 矩形曲線圖。描述了整個一個周期360°的曲線。在圖3和圖4中很明顯看到電機線圈在90°換相點處線圈電流要 么是最大電流(full power) 要么是沒有電流。  一個周期內(360°) 每組線圈由4個整步或者8個半步構成。也就是50個極的步進電機需要50個電 氣步距來完成一周的機械旋轉(360°) 。   Figure 1: Full-step operation   Figure 2: Half-step operation  低的步距分辨率模式比如半步或者整步是步進電機噪音的主要來源。會引起極大的震動在這個 機械系統中,尤其是在低速運行時和接近機械共振頻率的時候。在高速的時候,恰好由于慣量的存在 這個效應會被降低,電機的轉子可以為認為成諧波振蕩器或者彈簧鐘擺,如圖3。   Figure 3: Pendulum behavior of the rotor leads to vibrations  在新的矢量電流從驅動器端輸出之后,電機轉子會根據新的位置指令移動下一個整步或者半步的位置和脈搏反應相似在新的位置點周圍,轉子會產生超調和振蕩,如此一來會導致機械振動和噪音。為了減少這些震動,等步細分的原來被提了出來,將一個整步分割成更小的部分或者微步細分,典型的細分數是2(half-stepping) 、4(quarter-stepping) 、8、32甚至更大的細分。  電機定子線圈的電流并不是最大電流(Fullcurrent) 或者就是沒有電流,而是一個中間的電流 值,相比于4個整步電流(4 full steps) 更接近于一個正弦波形狀。永磁體的轉子位置處在2個整步位置之間(合成磁場位置) 。最大的細分數是由驅動器的A/D和D/A能力決定。TRINAMIC所提供的驅動 和控制器可以達到256細分(8bit) 采用集成的正弦波配置表格,步進電機可以實現非常小的角度控 制,圖4描述了在達到新位置時候的波動。   Figure 4: Reduction of motor vibrations when switching from full-step to high microstep resolutions  斬波和PWM模式  噪音和振動的另外一個來源是傳統的斬波方式和脈寬調制(PWM)模式,由于比較粗的步距分辨 率是產生振動和噪音的主要因素,我們通常忽視了斬波和PWM帶來的問題。  傳統的恒定PWM斬波模式是電流控制的PWM斬波模式,該模式在快速衰減和慢速衰減之間有 個固定關系,在其最大數值的時候,電流才會達到規定的目標電流,最終導致平均電流是小于預期目標電流的,如圖5所示。   Figure 5: Constant of-time (TOFF) PWM chopper mode: average current is not equal to target current  在一個完整的電周期內,電流方向改變時在正弦波過零處有個平穩過渡期,這個會影響在很短的 過渡期內線圈里面的電流為零,也就是電機此時根本就沒有力矩,這就導致了電機擺動和振動,尤其是在低速情況下。  相比恒定的斬波模式,TRINAMIC 的 SpreadCycle PWM 斬波模式在慢速和快速衰減器之間自動 配置一個磁滯衰減功能。平均電流反應了配置的正常電流,在正弦的過零點不會出現過渡期,這就減少電流和力矩的波動,是電流波形更加接近正弦波,相比傳統恒定斬波模式,SpreadCycle PWM斬波 模式控制下的電機運行得要平穩、平滑很多。  這一點在電機從靜止或低速到中速過程中非常重要。   Figure 6: Zero-crossing plateau with classic of-time chopper modes  Figure 7: SpreadCycle hysteresis chopper with clean zero crossing  如何使步進電機實現完全的靜音?  盡管高細分能解決大部分情況下的低頻震動;先進的電流控制PWM斬波模式比如TRINAMIC的 SpreadCycle算法,這些在硬件上的作用很大程度上減少震動和顫動,這也滿足了大部分的應用,也適 合高速運動。但是基于電流控制的斬波模式,還是會存在可聽得見的噪音和振動,主要是由于電機線圈的不同步,檢測電阻上幾毫伏的調節噪音和PWM時基誤差,這些噪音和振動在一些高端應用場合 也是不被允許的,緩慢運行或中速運動的應用,以及任何不允許有噪音和場合。  T R INA MI C 的Stea lt h Ch o p算法 也 是 通 過硬 件 來實現的,從根本上使 步 進電 機 靜 音,但 是 Stealthchop功能如何影響了步進電機?為什么電機不會出現噪音和震動?Stealthchop采用一種與基 于電流斬波模式如SpeadCycle完全不同的方法。而是采用基于電壓斬波模式一種新技術,該技術保證了電機的靜音和平穩平滑運動。  TMC5130?一款小體積,精巧的步進電機驅動控制芯片,帶有StealthChop模式。TRINAMIC改 進了電壓調節模式聯合了電流控制。為了最大限度降低電流波動,TMC5130采用基于電流反饋來控制電壓調制,這允許系統自適應電機的參數和運行電壓。來自直接電流控制回路算法引起的微小震蕩被消除。  圖8和圖9顯示 電壓控制模式的Stealthchop和電流控制模式的SpreadCycle。   Figure 8: Sine wave of one motor phase with voltage-controlled StealthChopTM  chopper mode   Figure 9: Sine wave of one motor phase with current-controlled SpreadCycleTM  chopper mode  StealthChop模式下過零點的效果是非常完美的:當電流的信號從正變為負或者負變為正,不會有 過渡區域而是持續性的穿過零點。因為電流的調制是根據PWM占空比來控制的。在50%的PWM占空比,電流是0,StealthChop調整PWM的占空比來調節電機電流,PWM頻率是個常數,與此相反電流控制的斬波器通過調控頻率實現調節電機電流,在這里電流的波動是比較大的,此外電流的波動會在電機的永磁體轉子里產生渦流,這會導致電機的功耗損失。  這些頻率變化著的PWM發出的聲音是在可聽范圍之內的,會發出嘶嘶的聲音,而且電子定子會 由于磁致伸縮產生更大的噪音,進而會傳遞引起機械系統的震動。而StealthChop的固定斬波頻率 就不會有這些問題。沒有斬波頻率的變化除了電機運行時候微步相序分配器的變化。  除了電機軸承鋼球磨擦的聲音,這是無法避免的之外,StealthChop可以驅動電機工作在極度 的靜音下,可以實現控制電機聲音在10dB分貝以下,噪音大大低于傳統的電流控制方式。我們從物理中得知 3dB分貝的減少量會將噪音程度降低一半。   Figure 10: Zoomed-in PWM view of both motor phases and coil current with voltage-controlled StealthChopTM  chopper mode   Figure 11: Zoomed-in PWM view of both motor phases and coil current with current-controlled SpreadCycleTM  chopper mode  對步進電機來說改變了什么?  如今步進電機還是一種十分經濟的電機,已經被應用了很多年,依舊采用和原來一樣的材料,一 樣的生產工序和裝配工藝。  但是相比過去,如今步進電機被更簡單的控制單元驅動,更先進的算法和更高度集成的微電子是 原來的電機發揮出更大的潛能。在接近電機的驅動電路中更多的信息被獲取和處理并實時在驅動電 流里被處理以優化電機控制,StealthChop便是一個完美的例子它的算法和PWM斬波緊密聯系,此外 這些信息還可以反饋到更高的應用控制層,而傳統的步進驅動方案都是單向的(脈沖/方向) ,所有 TRINAMIC的智能步進電機驅動方案都是雙向通訊,這些接口還可以監測不同狀態、診斷信息。這可 以增加系統的可靠性,提供系統的性能。  StealthChop靜音驅動技術非常適合3D打印、桌面型CNC、高端的CCTV、體外診斷設備、醫療檢 測設備等對噪音要求敏感的場合。  TRINAMIC提供帶有StealthChop功能的模塊,包括單軸、三軸和六軸驅控模塊。傳統的控制模 式下步進電機在低速情況下會出現比較大的噪音和震動,而在StealthChop模式下即使速度很低也聽不到明顯的聲音。  下載本文:如何消除步進電機的噪音和振動?
    Figure 6: Zero-crossing plateau with classic of-time chopper modes


    步進電機的噪音來自哪里?  由于步進電機由于結構簡單、控制方便、安全性高、成本低、停止時候力矩大、在低速情況下不需 要減速機就可以輸出很大的力矩、相比直流無刷和伺服電機,步進電機不需要復雜的控制算法也不需要編碼器反饋情況下可以實現位置控制。被用在很多要求精確定位的場合,基本上在很多需要移動控 制的場合都會用到步進電機如自動化控制、數字化生產如3D、醫療和光學等眾多領域。  步進電機有一個缺點就是噪音比較大,特別是在低速的時候。震動主要來自兩個方面一是步進電 機的步距分辨率(步距階躍) 另一方面是來自斬波和脈寬調制(PWM) 的不良模式反應。  步距角分辨率和細分  典型的步進電機有50個極(Poles),就是200個整步(Full Steps),也就是整步情況下每步1.8° 角度,電機旋轉一周需要360°。但是也有些步進電機的步距角更小比如整步需要800步的。起初,這些步進電機被用作整步或者半步模式下,矢量電流提供給電機線圈A(藍色) 和線圈B(紅色) 矩形曲線圖。描述了整個一個周期360°的曲線。在圖3和圖4中很明顯看到電機線圈在90°換相點處線圈電流要 么是最大電流(full power) 要么是沒有電流。  一個周期內(360°) 每組線圈由4個整步或者8個半步構成。也就是50個極的步進電機需要50個電 氣步距來完成一周的機械旋轉(360°) 。   Figure 1: Full-step operation   Figure 2: Half-step operation  低的步距分辨率模式比如半步或者整步是步進電機噪音的主要來源。會引起極大的震動在這個 機械系統中,尤其是在低速運行時和接近機械共振頻率的時候。在高速的時候,恰好由于慣量的存在 這個效應會被降低,電機的轉子可以為認為成諧波振蕩器或者彈簧鐘擺,如圖3。   Figure 3: Pendulum behavior of the rotor leads to vibrations  在新的矢量電流從驅動器端輸出之后,電機轉子會根據新的位置指令移動下一個整步或者半步的位置和脈搏反應相似在新的位置點周圍,轉子會產生超調和振蕩,如此一來會導致機械振動和噪音。為了減少這些震動,等步細分的原來被提了出來,將一個整步分割成更小的部分或者微步細分,典型的細分數是2(half-stepping) 、4(quarter-stepping) 、8、32甚至更大的細分。  電機定子線圈的電流并不是最大電流(Fullcurrent) 或者就是沒有電流,而是一個中間的電流 值,相比于4個整步電流(4 full steps) 更接近于一個正弦波形狀。永磁體的轉子位置處在2個整步位置之間(合成磁場位置) 。最大的細分數是由驅動器的A/D和D/A能力決定。TRINAMIC所提供的驅動 和控制器可以達到256細分(8bit) 采用集成的正弦波配置表格,步進電機可以實現非常小的角度控 制,圖4描述了在達到新位置時候的波動。   Figure 4: Reduction of motor vibrations when switching from full-step to high microstep resolutions  斬波和PWM模式  噪音和振動的另外一個來源是傳統的斬波方式和脈寬調制(PWM)模式,由于比較粗的步距分辨 率是產生振動和噪音的主要因素,我們通常忽視了斬波和PWM帶來的問題。  傳統的恒定PWM斬波模式是電流控制的PWM斬波模式,該模式在快速衰減和慢速衰減之間有 個固定關系,在其最大數值的時候,電流才會達到規定的目標電流,最終導致平均電流是小于預期目標電流的,如圖5所示。   Figure 5: Constant of-time (TOFF) PWM chopper mode: average current is not equal to target current  在一個完整的電周期內,電流方向改變時在正弦波過零處有個平穩過渡期,這個會影響在很短的 過渡期內線圈里面的電流為零,也就是電機此時根本就沒有力矩,這就導致了電機擺動和振動,尤其是在低速情況下。  相比恒定的斬波模式,TRINAMIC 的 SpreadCycle PWM 斬波模式在慢速和快速衰減器之間自動 配置一個磁滯衰減功能。平均電流反應了配置的正常電流,在正弦的過零點不會出現過渡期,這就減少電流和力矩的波動,是電流波形更加接近正弦波,相比傳統恒定斬波模式,SpreadCycle PWM斬波 模式控制下的電機運行得要平穩、平滑很多。  這一點在電機從靜止或低速到中速過程中非常重要。   Figure 6: Zero-crossing plateau with classic of-time chopper modes  Figure 7: SpreadCycle hysteresis chopper with clean zero crossing  如何使步進電機實現完全的靜音?  盡管高細分能解決大部分情況下的低頻震動;先進的電流控制PWM斬波模式比如TRINAMIC的 SpreadCycle算法,這些在硬件上的作用很大程度上減少震動和顫動,這也滿足了大部分的應用,也適 合高速運動。但是基于電流控制的斬波模式,還是會存在可聽得見的噪音和振動,主要是由于電機線圈的不同步,檢測電阻上幾毫伏的調節噪音和PWM時基誤差,這些噪音和振動在一些高端應用場合 也是不被允許的,緩慢運行或中速運動的應用,以及任何不允許有噪音和場合。  T R INA MI C 的Stea lt h Ch o p算法 也 是 通 過硬 件 來實現的,從根本上使 步 進電 機 靜 音,但 是 Stealthchop功能如何影響了步進電機?為什么電機不會出現噪音和震動?Stealthchop采用一種與基 于電流斬波模式如SpeadCycle完全不同的方法。而是采用基于電壓斬波模式一種新技術,該技術保證了電機的靜音和平穩平滑運動。  TMC5130?一款小體積,精巧的步進電機驅動控制芯片,帶有StealthChop模式。TRINAMIC改 進了電壓調節模式聯合了電流控制。為了最大限度降低電流波動,TMC5130采用基于電流反饋來控制電壓調制,這允許系統自適應電機的參數和運行電壓。來自直接電流控制回路算法引起的微小震蕩被消除。  圖8和圖9顯示 電壓控制模式的Stealthchop和電流控制模式的SpreadCycle。   Figure 8: Sine wave of one motor phase with voltage-controlled StealthChopTM  chopper mode   Figure 9: Sine wave of one motor phase with current-controlled SpreadCycleTM  chopper mode  StealthChop模式下過零點的效果是非常完美的:當電流的信號從正變為負或者負變為正,不會有 過渡區域而是持續性的穿過零點。因為電流的調制是根據PWM占空比來控制的。在50%的PWM占空比,電流是0,StealthChop調整PWM的占空比來調節電機電流,PWM頻率是個常數,與此相反電流控制的斬波器通過調控頻率實現調節電機電流,在這里電流的波動是比較大的,此外電流的波動會在電機的永磁體轉子里產生渦流,這會導致電機的功耗損失。  這些頻率變化著的PWM發出的聲音是在可聽范圍之內的,會發出嘶嘶的聲音,而且電子定子會 由于磁致伸縮產生更大的噪音,進而會傳遞引起機械系統的震動。而StealthChop的固定斬波頻率 就不會有這些問題。沒有斬波頻率的變化除了電機運行時候微步相序分配器的變化。  除了電機軸承鋼球磨擦的聲音,這是無法避免的之外,StealthChop可以驅動電機工作在極度 的靜音下,可以實現控制電機聲音在10dB分貝以下,噪音大大低于傳統的電流控制方式。我們從物理中得知 3dB分貝的減少量會將噪音程度降低一半。   Figure 10: Zoomed-in PWM view of both motor phases and coil current with voltage-controlled StealthChopTM  chopper mode   Figure 11: Zoomed-in PWM view of both motor phases and coil current with current-controlled SpreadCycleTM  chopper mode  對步進電機來說改變了什么?  如今步進電機還是一種十分經濟的電機,已經被應用了很多年,依舊采用和原來一樣的材料,一 樣的生產工序和裝配工藝。  但是相比過去,如今步進電機被更簡單的控制單元驅動,更先進的算法和更高度集成的微電子是 原來的電機發揮出更大的潛能。在接近電機的驅動電路中更多的信息被獲取和處理并實時在驅動電 流里被處理以優化電機控制,StealthChop便是一個完美的例子它的算法和PWM斬波緊密聯系,此外 這些信息還可以反饋到更高的應用控制層,而傳統的步進驅動方案都是單向的(脈沖/方向) ,所有 TRINAMIC的智能步進電機驅動方案都是雙向通訊,這些接口還可以監測不同狀態、診斷信息。這可 以增加系統的可靠性,提供系統的性能。  StealthChop靜音驅動技術非常適合3D打印、桌面型CNC、高端的CCTV、體外診斷設備、醫療檢 測設備等對噪音要求敏感的場合。  TRINAMIC提供帶有StealthChop功能的模塊,包括單軸、三軸和六軸驅控模塊。傳統的控制模 式下步進電機在低速情況下會出現比較大的噪音和震動,而在StealthChop模式下即使速度很低也聽不到明顯的聲音。  下載本文:如何消除步進電機的噪音和振動?
    Figure 7: SpreadCycle hysteresis chopper with clean zero crossing


    如何使步進電機實現完全的靜音?

    盡管高細分能解決大部分情況下的低頻震動;先進的電流控制PWM斬波模式比如TRINAMIC的 SpreadCycle算法,這些在硬件上的作用很大程度上減少震動和顫動,這也滿足了大部分的應用,也適 合高速運動。但是基于電流控制的斬波模式,還是會存在可聽得見的噪音和振動,主要是由于電機線圈的不同步,檢測電阻上幾毫伏的調節噪音和PWM時基誤差,這些噪音和振動在一些高端應用場合 也是不被允許的,緩慢運行或中速運動的應用,以及任何不允許有噪音和場合。

    T R INA MI C 的Stea lt h Ch o p算法 也 是 通 過硬 件 來實現的,從根本上使 步 進電 機 靜 音,但 是 Stealthchop功能如何影響了步進電機?為什么電機不會出現噪音和震動?Stealthchop采用一種與基 于電流斬波模式如SpeadCycle完全不同的方法。而是采用基于電壓斬波模式一種新技術,該技術保證了電機的靜音和平穩平滑運動。

    TMC5130?一款小體積,精巧的步進電機驅動控制芯片,帶有StealthChop模式。TRINAMIC改 進了電壓調節模式聯合了電流控制。為了最大限度降低電流波動,TMC5130采用基于電流反饋來控制電壓調制,這允許系統自適應電機的參數和運行電壓。來自直接電流控制回路算法引起的微小震蕩被消除。

    圖8和圖9顯示 電壓控制模式的Stealthchop和電流控制模式的SpreadCycle。


    步進電機的噪音來自哪里?  由于步進電機由于結構簡單、控制方便、安全性高、成本低、停止時候力矩大、在低速情況下不需 要減速機就可以輸出很大的力矩、相比直流無刷和伺服電機,步進電機不需要復雜的控制算法也不需要編碼器反饋情況下可以實現位置控制。被用在很多要求精確定位的場合,基本上在很多需要移動控 制的場合都會用到步進電機如自動化控制、數字化生產如3D、醫療和光學等眾多領域。  步進電機有一個缺點就是噪音比較大,特別是在低速的時候。震動主要來自兩個方面一是步進電 機的步距分辨率(步距階躍) 另一方面是來自斬波和脈寬調制(PWM) 的不良模式反應。  步距角分辨率和細分  典型的步進電機有50個極(Poles),就是200個整步(Full Steps),也就是整步情況下每步1.8° 角度,電機旋轉一周需要360°。但是也有些步進電機的步距角更小比如整步需要800步的。起初,這些步進電機被用作整步或者半步模式下,矢量電流提供給電機線圈A(藍色) 和線圈B(紅色) 矩形曲線圖。描述了整個一個周期360°的曲線。在圖3和圖4中很明顯看到電機線圈在90°換相點處線圈電流要 么是最大電流(full power) 要么是沒有電流。  一個周期內(360°) 每組線圈由4個整步或者8個半步構成。也就是50個極的步進電機需要50個電 氣步距來完成一周的機械旋轉(360°) 。   Figure 1: Full-step operation   Figure 2: Half-step operation  低的步距分辨率模式比如半步或者整步是步進電機噪音的主要來源。會引起極大的震動在這個 機械系統中,尤其是在低速運行時和接近機械共振頻率的時候。在高速的時候,恰好由于慣量的存在 這個效應會被降低,電機的轉子可以為認為成諧波振蕩器或者彈簧鐘擺,如圖3。   Figure 3: Pendulum behavior of the rotor leads to vibrations  在新的矢量電流從驅動器端輸出之后,電機轉子會根據新的位置指令移動下一個整步或者半步的位置和脈搏反應相似在新的位置點周圍,轉子會產生超調和振蕩,如此一來會導致機械振動和噪音。為了減少這些震動,等步細分的原來被提了出來,將一個整步分割成更小的部分或者微步細分,典型的細分數是2(half-stepping) 、4(quarter-stepping) 、8、32甚至更大的細分。  電機定子線圈的電流并不是最大電流(Fullcurrent) 或者就是沒有電流,而是一個中間的電流 值,相比于4個整步電流(4 full steps) 更接近于一個正弦波形狀。永磁體的轉子位置處在2個整步位置之間(合成磁場位置) 。最大的細分數是由驅動器的A/D和D/A能力決定。TRINAMIC所提供的驅動 和控制器可以達到256細分(8bit) 采用集成的正弦波配置表格,步進電機可以實現非常小的角度控 制,圖4描述了在達到新位置時候的波動。   Figure 4: Reduction of motor vibrations when switching from full-step to high microstep resolutions  斬波和PWM模式  噪音和振動的另外一個來源是傳統的斬波方式和脈寬調制(PWM)模式,由于比較粗的步距分辨 率是產生振動和噪音的主要因素,我們通常忽視了斬波和PWM帶來的問題。  傳統的恒定PWM斬波模式是電流控制的PWM斬波模式,該模式在快速衰減和慢速衰減之間有 個固定關系,在其最大數值的時候,電流才會達到規定的目標電流,最終導致平均電流是小于預期目標電流的,如圖5所示。   Figure 5: Constant of-time (TOFF) PWM chopper mode: average current is not equal to target current  在一個完整的電周期內,電流方向改變時在正弦波過零處有個平穩過渡期,這個會影響在很短的 過渡期內線圈里面的電流為零,也就是電機此時根本就沒有力矩,這就導致了電機擺動和振動,尤其是在低速情況下。  相比恒定的斬波模式,TRINAMIC 的 SpreadCycle PWM 斬波模式在慢速和快速衰減器之間自動 配置一個磁滯衰減功能。平均電流反應了配置的正常電流,在正弦的過零點不會出現過渡期,這就減少電流和力矩的波動,是電流波形更加接近正弦波,相比傳統恒定斬波模式,SpreadCycle PWM斬波 模式控制下的電機運行得要平穩、平滑很多。  這一點在電機從靜止或低速到中速過程中非常重要。   Figure 6: Zero-crossing plateau with classic of-time chopper modes  Figure 7: SpreadCycle hysteresis chopper with clean zero crossing  如何使步進電機實現完全的靜音?  盡管高細分能解決大部分情況下的低頻震動;先進的電流控制PWM斬波模式比如TRINAMIC的 SpreadCycle算法,這些在硬件上的作用很大程度上減少震動和顫動,這也滿足了大部分的應用,也適 合高速運動。但是基于電流控制的斬波模式,還是會存在可聽得見的噪音和振動,主要是由于電機線圈的不同步,檢測電阻上幾毫伏的調節噪音和PWM時基誤差,這些噪音和振動在一些高端應用場合 也是不被允許的,緩慢運行或中速運動的應用,以及任何不允許有噪音和場合。  T R INA MI C 的Stea lt h Ch o p算法 也 是 通 過硬 件 來實現的,從根本上使 步 進電 機 靜 音,但 是 Stealthchop功能如何影響了步進電機?為什么電機不會出現噪音和震動?Stealthchop采用一種與基 于電流斬波模式如SpeadCycle完全不同的方法。而是采用基于電壓斬波模式一種新技術,該技術保證了電機的靜音和平穩平滑運動。  TMC5130?一款小體積,精巧的步進電機驅動控制芯片,帶有StealthChop模式。TRINAMIC改 進了電壓調節模式聯合了電流控制。為了最大限度降低電流波動,TMC5130采用基于電流反饋來控制電壓調制,這允許系統自適應電機的參數和運行電壓。來自直接電流控制回路算法引起的微小震蕩被消除。  圖8和圖9顯示 電壓控制模式的Stealthchop和電流控制模式的SpreadCycle。   Figure 8: Sine wave of one motor phase with voltage-controlled StealthChopTM  chopper mode   Figure 9: Sine wave of one motor phase with current-controlled SpreadCycleTM  chopper mode  StealthChop模式下過零點的效果是非常完美的:當電流的信號從正變為負或者負變為正,不會有 過渡區域而是持續性的穿過零點。因為電流的調制是根據PWM占空比來控制的。在50%的PWM占空比,電流是0,StealthChop調整PWM的占空比來調節電機電流,PWM頻率是個常數,與此相反電流控制的斬波器通過調控頻率實現調節電機電流,在這里電流的波動是比較大的,此外電流的波動會在電機的永磁體轉子里產生渦流,這會導致電機的功耗損失。  這些頻率變化著的PWM發出的聲音是在可聽范圍之內的,會發出嘶嘶的聲音,而且電子定子會 由于磁致伸縮產生更大的噪音,進而會傳遞引起機械系統的震動。而StealthChop的固定斬波頻率 就不會有這些問題。沒有斬波頻率的變化除了電機運行時候微步相序分配器的變化。  除了電機軸承鋼球磨擦的聲音,這是無法避免的之外,StealthChop可以驅動電機工作在極度 的靜音下,可以實現控制電機聲音在10dB分貝以下,噪音大大低于傳統的電流控制方式。我們從物理中得知 3dB分貝的減少量會將噪音程度降低一半。   Figure 10: Zoomed-in PWM view of both motor phases and coil current with voltage-controlled StealthChopTM  chopper mode   Figure 11: Zoomed-in PWM view of both motor phases and coil current with current-controlled SpreadCycleTM  chopper mode  對步進電機來說改變了什么?  如今步進電機還是一種十分經濟的電機,已經被應用了很多年,依舊采用和原來一樣的材料,一 樣的生產工序和裝配工藝。  但是相比過去,如今步進電機被更簡單的控制單元驅動,更先進的算法和更高度集成的微電子是 原來的電機發揮出更大的潛能。在接近電機的驅動電路中更多的信息被獲取和處理并實時在驅動電 流里被處理以優化電機控制,StealthChop便是一個完美的例子它的算法和PWM斬波緊密聯系,此外 這些信息還可以反饋到更高的應用控制層,而傳統的步進驅動方案都是單向的(脈沖/方向) ,所有 TRINAMIC的智能步進電機驅動方案都是雙向通訊,這些接口還可以監測不同狀態、診斷信息。這可 以增加系統的可靠性,提供系統的性能。  StealthChop靜音驅動技術非常適合3D打印、桌面型CNC、高端的CCTV、體外診斷設備、醫療檢 測設備等對噪音要求敏感的場合。  TRINAMIC提供帶有StealthChop功能的模塊,包括單軸、三軸和六軸驅控模塊。傳統的控制模 式下步進電機在低速情況下會出現比較大的噪音和震動,而在StealthChop模式下即使速度很低也聽不到明顯的聲音。  下載本文:如何消除步進電機的噪音和振動?
    Figure 8: Sine wave of one motor phase with voltage-controlled StealthChopTM  chopper mode

    步進電機的噪音來自哪里?  由于步進電機由于結構簡單、控制方便、安全性高、成本低、停止時候力矩大、在低速情況下不需 要減速機就可以輸出很大的力矩、相比直流無刷和伺服電機,步進電機不需要復雜的控制算法也不需要編碼器反饋情況下可以實現位置控制。被用在很多要求精確定位的場合,基本上在很多需要移動控 制的場合都會用到步進電機如自動化控制、數字化生產如3D、醫療和光學等眾多領域。  步進電機有一個缺點就是噪音比較大,特別是在低速的時候。震動主要來自兩個方面一是步進電 機的步距分辨率(步距階躍) 另一方面是來自斬波和脈寬調制(PWM) 的不良模式反應。  步距角分辨率和細分  典型的步進電機有50個極(Poles),就是200個整步(Full Steps),也就是整步情況下每步1.8° 角度,電機旋轉一周需要360°。但是也有些步進電機的步距角更小比如整步需要800步的。起初,這些步進電機被用作整步或者半步模式下,矢量電流提供給電機線圈A(藍色) 和線圈B(紅色) 矩形曲線圖。描述了整個一個周期360°的曲線。在圖3和圖4中很明顯看到電機線圈在90°換相點處線圈電流要 么是最大電流(full power) 要么是沒有電流。  一個周期內(360°) 每組線圈由4個整步或者8個半步構成。也就是50個極的步進電機需要50個電 氣步距來完成一周的機械旋轉(360°) 。   Figure 1: Full-step operation   Figure 2: Half-step operation  低的步距分辨率模式比如半步或者整步是步進電機噪音的主要來源。會引起極大的震動在這個 機械系統中,尤其是在低速運行時和接近機械共振頻率的時候。在高速的時候,恰好由于慣量的存在 這個效應會被降低,電機的轉子可以為認為成諧波振蕩器或者彈簧鐘擺,如圖3。   Figure 3: Pendulum behavior of the rotor leads to vibrations  在新的矢量電流從驅動器端輸出之后,電機轉子會根據新的位置指令移動下一個整步或者半步的位置和脈搏反應相似在新的位置點周圍,轉子會產生超調和振蕩,如此一來會導致機械振動和噪音。為了減少這些震動,等步細分的原來被提了出來,將一個整步分割成更小的部分或者微步細分,典型的細分數是2(half-stepping) 、4(quarter-stepping) 、8、32甚至更大的細分。  電機定子線圈的電流并不是最大電流(Fullcurrent) 或者就是沒有電流,而是一個中間的電流 值,相比于4個整步電流(4 full steps) 更接近于一個正弦波形狀。永磁體的轉子位置處在2個整步位置之間(合成磁場位置) 。最大的細分數是由驅動器的A/D和D/A能力決定。TRINAMIC所提供的驅動 和控制器可以達到256細分(8bit) 采用集成的正弦波配置表格,步進電機可以實現非常小的角度控 制,圖4描述了在達到新位置時候的波動。   Figure 4: Reduction of motor vibrations when switching from full-step to high microstep resolutions  斬波和PWM模式  噪音和振動的另外一個來源是傳統的斬波方式和脈寬調制(PWM)模式,由于比較粗的步距分辨 率是產生振動和噪音的主要因素,我們通常忽視了斬波和PWM帶來的問題。  傳統的恒定PWM斬波模式是電流控制的PWM斬波模式,該模式在快速衰減和慢速衰減之間有 個固定關系,在其最大數值的時候,電流才會達到規定的目標電流,最終導致平均電流是小于預期目標電流的,如圖5所示。   Figure 5: Constant of-time (TOFF) PWM chopper mode: average current is not equal to target current  在一個完整的電周期內,電流方向改變時在正弦波過零處有個平穩過渡期,這個會影響在很短的 過渡期內線圈里面的電流為零,也就是電機此時根本就沒有力矩,這就導致了電機擺動和振動,尤其是在低速情況下。  相比恒定的斬波模式,TRINAMIC 的 SpreadCycle PWM 斬波模式在慢速和快速衰減器之間自動 配置一個磁滯衰減功能。平均電流反應了配置的正常電流,在正弦的過零點不會出現過渡期,這就減少電流和力矩的波動,是電流波形更加接近正弦波,相比傳統恒定斬波模式,SpreadCycle PWM斬波 模式控制下的電機運行得要平穩、平滑很多。  這一點在電機從靜止或低速到中速過程中非常重要。   Figure 6: Zero-crossing plateau with classic of-time chopper modes  Figure 7: SpreadCycle hysteresis chopper with clean zero crossing  如何使步進電機實現完全的靜音?  盡管高細分能解決大部分情況下的低頻震動;先進的電流控制PWM斬波模式比如TRINAMIC的 SpreadCycle算法,這些在硬件上的作用很大程度上減少震動和顫動,這也滿足了大部分的應用,也適 合高速運動。但是基于電流控制的斬波模式,還是會存在可聽得見的噪音和振動,主要是由于電機線圈的不同步,檢測電阻上幾毫伏的調節噪音和PWM時基誤差,這些噪音和振動在一些高端應用場合 也是不被允許的,緩慢運行或中速運動的應用,以及任何不允許有噪音和場合。  T R INA MI C 的Stea lt h Ch o p算法 也 是 通 過硬 件 來實現的,從根本上使 步 進電 機 靜 音,但 是 Stealthchop功能如何影響了步進電機?為什么電機不會出現噪音和震動?Stealthchop采用一種與基 于電流斬波模式如SpeadCycle完全不同的方法。而是采用基于電壓斬波模式一種新技術,該技術保證了電機的靜音和平穩平滑運動。  TMC5130?一款小體積,精巧的步進電機驅動控制芯片,帶有StealthChop模式。TRINAMIC改 進了電壓調節模式聯合了電流控制。為了最大限度降低電流波動,TMC5130采用基于電流反饋來控制電壓調制,這允許系統自適應電機的參數和運行電壓。來自直接電流控制回路算法引起的微小震蕩被消除。  圖8和圖9顯示 電壓控制模式的Stealthchop和電流控制模式的SpreadCycle。   Figure 8: Sine wave of one motor phase with voltage-controlled StealthChopTM  chopper mode   Figure 9: Sine wave of one motor phase with current-controlled SpreadCycleTM  chopper mode  StealthChop模式下過零點的效果是非常完美的:當電流的信號從正變為負或者負變為正,不會有 過渡區域而是持續性的穿過零點。因為電流的調制是根據PWM占空比來控制的。在50%的PWM占空比,電流是0,StealthChop調整PWM的占空比來調節電機電流,PWM頻率是個常數,與此相反電流控制的斬波器通過調控頻率實現調節電機電流,在這里電流的波動是比較大的,此外電流的波動會在電機的永磁體轉子里產生渦流,這會導致電機的功耗損失。  這些頻率變化著的PWM發出的聲音是在可聽范圍之內的,會發出嘶嘶的聲音,而且電子定子會 由于磁致伸縮產生更大的噪音,進而會傳遞引起機械系統的震動。而StealthChop的固定斬波頻率 就不會有這些問題。沒有斬波頻率的變化除了電機運行時候微步相序分配器的變化。  除了電機軸承鋼球磨擦的聲音,這是無法避免的之外,StealthChop可以驅動電機工作在極度 的靜音下,可以實現控制電機聲音在10dB分貝以下,噪音大大低于傳統的電流控制方式。我們從物理中得知 3dB分貝的減少量會將噪音程度降低一半。   Figure 10: Zoomed-in PWM view of both motor phases and coil current with voltage-controlled StealthChopTM  chopper mode   Figure 11: Zoomed-in PWM view of both motor phases and coil current with current-controlled SpreadCycleTM  chopper mode  對步進電機來說改變了什么?  如今步進電機還是一種十分經濟的電機,已經被應用了很多年,依舊采用和原來一樣的材料,一 樣的生產工序和裝配工藝。  但是相比過去,如今步進電機被更簡單的控制單元驅動,更先進的算法和更高度集成的微電子是 原來的電機發揮出更大的潛能。在接近電機的驅動電路中更多的信息被獲取和處理并實時在驅動電 流里被處理以優化電機控制,StealthChop便是一個完美的例子它的算法和PWM斬波緊密聯系,此外 這些信息還可以反饋到更高的應用控制層,而傳統的步進驅動方案都是單向的(脈沖/方向) ,所有 TRINAMIC的智能步進電機驅動方案都是雙向通訊,這些接口還可以監測不同狀態、診斷信息。這可 以增加系統的可靠性,提供系統的性能。  StealthChop靜音驅動技術非常適合3D打印、桌面型CNC、高端的CCTV、體外診斷設備、醫療檢 測設備等對噪音要求敏感的場合。  TRINAMIC提供帶有StealthChop功能的模塊,包括單軸、三軸和六軸驅控模塊。傳統的控制模 式下步進電機在低速情況下會出現比較大的噪音和震動,而在StealthChop模式下即使速度很低也聽不到明顯的聲音。  下載本文:如何消除步進電機的噪音和振動?
    Figure 9: Sine wave of one motor phase with current-controlled SpreadCycleTM  chopper mode


    StealthChop模式下過零點的效果是非常完美的:當電流的信號從正變為負或者負變為正,不會有 過渡區域而是持續性的穿過零點。因為電流的調制是根據PWM占空比來控制的。在50%的PWM占空比,電流是0,StealthChop調整PWM的占空比來調節電機電流,PWM頻率是個常數,與此相反電流控制的斬波器通過調控頻率實現調節電機電流,在這里電流的波動是比較大的,此外電流的波動會在電機的永磁體轉子里產生渦流,這會導致電機的功耗損失。

    這些頻率變化著的PWM發出的聲音是在可聽范圍之內的,會發出嘶嘶的聲音,而且電子定子會 由于磁致伸縮產生更大的噪音,進而會傳遞引起機械系統的震動。而StealthChop的固定斬波頻率 就不會有這些問題。沒有斬波頻率的變化除了電機運行時候微步相序分配器的變化。

    除了電機軸承鋼球磨擦的聲音,這是無法避免的之外,StealthChop可以驅動電機工作在極度 的靜音下,可以實現控制電機聲音在10dB分貝以下,噪音大大低于傳統的電流控制方式。我們從物理中得知 3dB分貝的減少量會將噪音程度降低一半。


    步進電機的噪音來自哪里?  由于步進電機由于結構簡單、控制方便、安全性高、成本低、停止時候力矩大、在低速情況下不需 要減速機就可以輸出很大的力矩、相比直流無刷和伺服電機,步進電機不需要復雜的控制算法也不需要編碼器反饋情況下可以實現位置控制。被用在很多要求精確定位的場合,基本上在很多需要移動控 制的場合都會用到步進電機如自動化控制、數字化生產如3D、醫療和光學等眾多領域。  步進電機有一個缺點就是噪音比較大,特別是在低速的時候。震動主要來自兩個方面一是步進電 機的步距分辨率(步距階躍) 另一方面是來自斬波和脈寬調制(PWM) 的不良模式反應。  步距角分辨率和細分  典型的步進電機有50個極(Poles),就是200個整步(Full Steps),也就是整步情況下每步1.8° 角度,電機旋轉一周需要360°。但是也有些步進電機的步距角更小比如整步需要800步的。起初,這些步進電機被用作整步或者半步模式下,矢量電流提供給電機線圈A(藍色) 和線圈B(紅色) 矩形曲線圖。描述了整個一個周期360°的曲線。在圖3和圖4中很明顯看到電機線圈在90°換相點處線圈電流要 么是最大電流(full power) 要么是沒有電流。  一個周期內(360°) 每組線圈由4個整步或者8個半步構成。也就是50個極的步進電機需要50個電 氣步距來完成一周的機械旋轉(360°) 。   Figure 1: Full-step operation   Figure 2: Half-step operation  低的步距分辨率模式比如半步或者整步是步進電機噪音的主要來源。會引起極大的震動在這個 機械系統中,尤其是在低速運行時和接近機械共振頻率的時候。在高速的時候,恰好由于慣量的存在 這個效應會被降低,電機的轉子可以為認為成諧波振蕩器或者彈簧鐘擺,如圖3。   Figure 3: Pendulum behavior of the rotor leads to vibrations  在新的矢量電流從驅動器端輸出之后,電機轉子會根據新的位置指令移動下一個整步或者半步的位置和脈搏反應相似在新的位置點周圍,轉子會產生超調和振蕩,如此一來會導致機械振動和噪音。為了減少這些震動,等步細分的原來被提了出來,將一個整步分割成更小的部分或者微步細分,典型的細分數是2(half-stepping) 、4(quarter-stepping) 、8、32甚至更大的細分。  電機定子線圈的電流并不是最大電流(Fullcurrent) 或者就是沒有電流,而是一個中間的電流 值,相比于4個整步電流(4 full steps) 更接近于一個正弦波形狀。永磁體的轉子位置處在2個整步位置之間(合成磁場位置) 。最大的細分數是由驅動器的A/D和D/A能力決定。TRINAMIC所提供的驅動 和控制器可以達到256細分(8bit) 采用集成的正弦波配置表格,步進電機可以實現非常小的角度控 制,圖4描述了在達到新位置時候的波動。   Figure 4: Reduction of motor vibrations when switching from full-step to high microstep resolutions  斬波和PWM模式  噪音和振動的另外一個來源是傳統的斬波方式和脈寬調制(PWM)模式,由于比較粗的步距分辨 率是產生振動和噪音的主要因素,我們通常忽視了斬波和PWM帶來的問題。  傳統的恒定PWM斬波模式是電流控制的PWM斬波模式,該模式在快速衰減和慢速衰減之間有 個固定關系,在其最大數值的時候,電流才會達到規定的目標電流,最終導致平均電流是小于預期目標電流的,如圖5所示。   Figure 5: Constant of-time (TOFF) PWM chopper mode: average current is not equal to target current  在一個完整的電周期內,電流方向改變時在正弦波過零處有個平穩過渡期,這個會影響在很短的 過渡期內線圈里面的電流為零,也就是電機此時根本就沒有力矩,這就導致了電機擺動和振動,尤其是在低速情況下。  相比恒定的斬波模式,TRINAMIC 的 SpreadCycle PWM 斬波模式在慢速和快速衰減器之間自動 配置一個磁滯衰減功能。平均電流反應了配置的正常電流,在正弦的過零點不會出現過渡期,這就減少電流和力矩的波動,是電流波形更加接近正弦波,相比傳統恒定斬波模式,SpreadCycle PWM斬波 模式控制下的電機運行得要平穩、平滑很多。  這一點在電機從靜止或低速到中速過程中非常重要。   Figure 6: Zero-crossing plateau with classic of-time chopper modes  Figure 7: SpreadCycle hysteresis chopper with clean zero crossing  如何使步進電機實現完全的靜音?  盡管高細分能解決大部分情況下的低頻震動;先進的電流控制PWM斬波模式比如TRINAMIC的 SpreadCycle算法,這些在硬件上的作用很大程度上減少震動和顫動,這也滿足了大部分的應用,也適 合高速運動。但是基于電流控制的斬波模式,還是會存在可聽得見的噪音和振動,主要是由于電機線圈的不同步,檢測電阻上幾毫伏的調節噪音和PWM時基誤差,這些噪音和振動在一些高端應用場合 也是不被允許的,緩慢運行或中速運動的應用,以及任何不允許有噪音和場合。  T R INA MI C 的Stea lt h Ch o p算法 也 是 通 過硬 件 來實現的,從根本上使 步 進電 機 靜 音,但 是 Stealthchop功能如何影響了步進電機?為什么電機不會出現噪音和震動?Stealthchop采用一種與基 于電流斬波模式如SpeadCycle完全不同的方法。而是采用基于電壓斬波模式一種新技術,該技術保證了電機的靜音和平穩平滑運動。  TMC5130?一款小體積,精巧的步進電機驅動控制芯片,帶有StealthChop模式。TRINAMIC改 進了電壓調節模式聯合了電流控制。為了最大限度降低電流波動,TMC5130采用基于電流反饋來控制電壓調制,這允許系統自適應電機的參數和運行電壓。來自直接電流控制回路算法引起的微小震蕩被消除。  圖8和圖9顯示 電壓控制模式的Stealthchop和電流控制模式的SpreadCycle。   Figure 8: Sine wave of one motor phase with voltage-controlled StealthChopTM  chopper mode   Figure 9: Sine wave of one motor phase with current-controlled SpreadCycleTM  chopper mode  StealthChop模式下過零點的效果是非常完美的:當電流的信號從正變為負或者負變為正,不會有 過渡區域而是持續性的穿過零點。因為電流的調制是根據PWM占空比來控制的。在50%的PWM占空比,電流是0,StealthChop調整PWM的占空比來調節電機電流,PWM頻率是個常數,與此相反電流控制的斬波器通過調控頻率實現調節電機電流,在這里電流的波動是比較大的,此外電流的波動會在電機的永磁體轉子里產生渦流,這會導致電機的功耗損失。  這些頻率變化著的PWM發出的聲音是在可聽范圍之內的,會發出嘶嘶的聲音,而且電子定子會 由于磁致伸縮產生更大的噪音,進而會傳遞引起機械系統的震動。而StealthChop的固定斬波頻率 就不會有這些問題。沒有斬波頻率的變化除了電機運行時候微步相序分配器的變化。  除了電機軸承鋼球磨擦的聲音,這是無法避免的之外,StealthChop可以驅動電機工作在極度 的靜音下,可以實現控制電機聲音在10dB分貝以下,噪音大大低于傳統的電流控制方式。我們從物理中得知 3dB分貝的減少量會將噪音程度降低一半。   Figure 10: Zoomed-in PWM view of both motor phases and coil current with voltage-controlled StealthChopTM  chopper mode   Figure 11: Zoomed-in PWM view of both motor phases and coil current with current-controlled SpreadCycleTM  chopper mode  對步進電機來說改變了什么?  如今步進電機還是一種十分經濟的電機,已經被應用了很多年,依舊采用和原來一樣的材料,一 樣的生產工序和裝配工藝。  但是相比過去,如今步進電機被更簡單的控制單元驅動,更先進的算法和更高度集成的微電子是 原來的電機發揮出更大的潛能。在接近電機的驅動電路中更多的信息被獲取和處理并實時在驅動電 流里被處理以優化電機控制,StealthChop便是一個完美的例子它的算法和PWM斬波緊密聯系,此外 這些信息還可以反饋到更高的應用控制層,而傳統的步進驅動方案都是單向的(脈沖/方向) ,所有 TRINAMIC的智能步進電機驅動方案都是雙向通訊,這些接口還可以監測不同狀態、診斷信息。這可 以增加系統的可靠性,提供系統的性能。  StealthChop靜音驅動技術非常適合3D打印、桌面型CNC、高端的CCTV、體外診斷設備、醫療檢 測設備等對噪音要求敏感的場合。  TRINAMIC提供帶有StealthChop功能的模塊,包括單軸、三軸和六軸驅控模塊。傳統的控制模 式下步進電機在低速情況下會出現比較大的噪音和震動,而在StealthChop模式下即使速度很低也聽不到明顯的聲音。  下載本文:如何消除步進電機的噪音和振動?
    Figure 10: Zoomed-in PWM view of both motor phases and coil current
    with voltage-controlled StealthChopTM  chopper mode


    步進電機的噪音來自哪里?  由于步進電機由于結構簡單、控制方便、安全性高、成本低、停止時候力矩大、在低速情況下不需 要減速機就可以輸出很大的力矩、相比直流無刷和伺服電機,步進電機不需要復雜的控制算法也不需要編碼器反饋情況下可以實現位置控制。被用在很多要求精確定位的場合,基本上在很多需要移動控 制的場合都會用到步進電機如自動化控制、數字化生產如3D、醫療和光學等眾多領域。  步進電機有一個缺點就是噪音比較大,特別是在低速的時候。震動主要來自兩個方面一是步進電 機的步距分辨率(步距階躍) 另一方面是來自斬波和脈寬調制(PWM) 的不良模式反應。  步距角分辨率和細分  典型的步進電機有50個極(Poles),就是200個整步(Full Steps),也就是整步情況下每步1.8° 角度,電機旋轉一周需要360°。但是也有些步進電機的步距角更小比如整步需要800步的。起初,這些步進電機被用作整步或者半步模式下,矢量電流提供給電機線圈A(藍色) 和線圈B(紅色) 矩形曲線圖。描述了整個一個周期360°的曲線。在圖3和圖4中很明顯看到電機線圈在90°換相點處線圈電流要 么是最大電流(full power) 要么是沒有電流。  一個周期內(360°) 每組線圈由4個整步或者8個半步構成。也就是50個極的步進電機需要50個電 氣步距來完成一周的機械旋轉(360°) 。   Figure 1: Full-step operation   Figure 2: Half-step operation  低的步距分辨率模式比如半步或者整步是步進電機噪音的主要來源。會引起極大的震動在這個 機械系統中,尤其是在低速運行時和接近機械共振頻率的時候。在高速的時候,恰好由于慣量的存在 這個效應會被降低,電機的轉子可以為認為成諧波振蕩器或者彈簧鐘擺,如圖3。   Figure 3: Pendulum behavior of the rotor leads to vibrations  在新的矢量電流從驅動器端輸出之后,電機轉子會根據新的位置指令移動下一個整步或者半步的位置和脈搏反應相似在新的位置點周圍,轉子會產生超調和振蕩,如此一來會導致機械振動和噪音。為了減少這些震動,等步細分的原來被提了出來,將一個整步分割成更小的部分或者微步細分,典型的細分數是2(half-stepping) 、4(quarter-stepping) 、8、32甚至更大的細分。  電機定子線圈的電流并不是最大電流(Fullcurrent) 或者就是沒有電流,而是一個中間的電流 值,相比于4個整步電流(4 full steps) 更接近于一個正弦波形狀。永磁體的轉子位置處在2個整步位置之間(合成磁場位置) 。最大的細分數是由驅動器的A/D和D/A能力決定。TRINAMIC所提供的驅動 和控制器可以達到256細分(8bit) 采用集成的正弦波配置表格,步進電機可以實現非常小的角度控 制,圖4描述了在達到新位置時候的波動。   Figure 4: Reduction of motor vibrations when switching from full-step to high microstep resolutions  斬波和PWM模式  噪音和振動的另外一個來源是傳統的斬波方式和脈寬調制(PWM)模式,由于比較粗的步距分辨 率是產生振動和噪音的主要因素,我們通常忽視了斬波和PWM帶來的問題。  傳統的恒定PWM斬波模式是電流控制的PWM斬波模式,該模式在快速衰減和慢速衰減之間有 個固定關系,在其最大數值的時候,電流才會達到規定的目標電流,最終導致平均電流是小于預期目標電流的,如圖5所示。   Figure 5: Constant of-time (TOFF) PWM chopper mode: average current is not equal to target current  在一個完整的電周期內,電流方向改變時在正弦波過零處有個平穩過渡期,這個會影響在很短的 過渡期內線圈里面的電流為零,也就是電機此時根本就沒有力矩,這就導致了電機擺動和振動,尤其是在低速情況下。  相比恒定的斬波模式,TRINAMIC 的 SpreadCycle PWM 斬波模式在慢速和快速衰減器之間自動 配置一個磁滯衰減功能。平均電流反應了配置的正常電流,在正弦的過零點不會出現過渡期,這就減少電流和力矩的波動,是電流波形更加接近正弦波,相比傳統恒定斬波模式,SpreadCycle PWM斬波 模式控制下的電機運行得要平穩、平滑很多。  這一點在電機從靜止或低速到中速過程中非常重要。   Figure 6: Zero-crossing plateau with classic of-time chopper modes  Figure 7: SpreadCycle hysteresis chopper with clean zero crossing  如何使步進電機實現完全的靜音?  盡管高細分能解決大部分情況下的低頻震動;先進的電流控制PWM斬波模式比如TRINAMIC的 SpreadCycle算法,這些在硬件上的作用很大程度上減少震動和顫動,這也滿足了大部分的應用,也適 合高速運動。但是基于電流控制的斬波模式,還是會存在可聽得見的噪音和振動,主要是由于電機線圈的不同步,檢測電阻上幾毫伏的調節噪音和PWM時基誤差,這些噪音和振動在一些高端應用場合 也是不被允許的,緩慢運行或中速運動的應用,以及任何不允許有噪音和場合。  T R INA MI C 的Stea lt h Ch o p算法 也 是 通 過硬 件 來實現的,從根本上使 步 進電 機 靜 音,但 是 Stealthchop功能如何影響了步進電機?為什么電機不會出現噪音和震動?Stealthchop采用一種與基 于電流斬波模式如SpeadCycle完全不同的方法。而是采用基于電壓斬波模式一種新技術,該技術保證了電機的靜音和平穩平滑運動。  TMC5130?一款小體積,精巧的步進電機驅動控制芯片,帶有StealthChop模式。TRINAMIC改 進了電壓調節模式聯合了電流控制。為了最大限度降低電流波動,TMC5130采用基于電流反饋來控制電壓調制,這允許系統自適應電機的參數和運行電壓。來自直接電流控制回路算法引起的微小震蕩被消除。  圖8和圖9顯示 電壓控制模式的Stealthchop和電流控制模式的SpreadCycle。   Figure 8: Sine wave of one motor phase with voltage-controlled StealthChopTM  chopper mode   Figure 9: Sine wave of one motor phase with current-controlled SpreadCycleTM  chopper mode  StealthChop模式下過零點的效果是非常完美的:當電流的信號從正變為負或者負變為正,不會有 過渡區域而是持續性的穿過零點。因為電流的調制是根據PWM占空比來控制的。在50%的PWM占空比,電流是0,StealthChop調整PWM的占空比來調節電機電流,PWM頻率是個常數,與此相反電流控制的斬波器通過調控頻率實現調節電機電流,在這里電流的波動是比較大的,此外電流的波動會在電機的永磁體轉子里產生渦流,這會導致電機的功耗損失。  這些頻率變化著的PWM發出的聲音是在可聽范圍之內的,會發出嘶嘶的聲音,而且電子定子會 由于磁致伸縮產生更大的噪音,進而會傳遞引起機械系統的震動。而StealthChop的固定斬波頻率 就不會有這些問題。沒有斬波頻率的變化除了電機運行時候微步相序分配器的變化。  除了電機軸承鋼球磨擦的聲音,這是無法避免的之外,StealthChop可以驅動電機工作在極度 的靜音下,可以實現控制電機聲音在10dB分貝以下,噪音大大低于傳統的電流控制方式。我們從物理中得知 3dB分貝的減少量會將噪音程度降低一半。   Figure 10: Zoomed-in PWM view of both motor phases and coil current with voltage-controlled StealthChopTM  chopper mode   Figure 11: Zoomed-in PWM view of both motor phases and coil current with current-controlled SpreadCycleTM  chopper mode  對步進電機來說改變了什么?  如今步進電機還是一種十分經濟的電機,已經被應用了很多年,依舊采用和原來一樣的材料,一 樣的生產工序和裝配工藝。  但是相比過去,如今步進電機被更簡單的控制單元驅動,更先進的算法和更高度集成的微電子是 原來的電機發揮出更大的潛能。在接近電機的驅動電路中更多的信息被獲取和處理并實時在驅動電 流里被處理以優化電機控制,StealthChop便是一個完美的例子它的算法和PWM斬波緊密聯系,此外 這些信息還可以反饋到更高的應用控制層,而傳統的步進驅動方案都是單向的(脈沖/方向) ,所有 TRINAMIC的智能步進電機驅動方案都是雙向通訊,這些接口還可以監測不同狀態、診斷信息。這可 以增加系統的可靠性,提供系統的性能。  StealthChop靜音驅動技術非常適合3D打印、桌面型CNC、高端的CCTV、體外診斷設備、醫療檢 測設備等對噪音要求敏感的場合。  TRINAMIC提供帶有StealthChop功能的模塊,包括單軸、三軸和六軸驅控模塊。傳統的控制模 式下步進電機在低速情況下會出現比較大的噪音和震動,而在StealthChop模式下即使速度很低也聽不到明顯的聲音。  下載本文:如何消除步進電機的噪音和振動?
    Figure 11: Zoomed-in PWM view of both motor phases and coil current
    with current-controlled SpreadCycleTM  chopper mode


    對步進電機來說改變了什么?

    如今步進電機還是一種十分經濟的電機,已經被應用了很多年,依舊采用和原來一樣的材料,一 樣的生產工序和裝配工藝。

    但是相比過去,如今步進電機被更簡單的控制單元驅動,更先進的算法和更高度集成的微電子是 原來的電機發揮出更大的潛能。在接近電機的驅動電路中更多的信息被獲取和處理并實時在驅動電 流里被處理以優化電機控制,StealthChop便是一個完美的例子它的算法和PWM斬波緊密聯系,此外 這些信息還可以反饋到更高的應用控制層,而傳統的步進驅動方案都是單向的(脈沖/方向) ,所有 TRINAMIC的智能步進電機驅動方案都是雙向通訊,這些接口還可以監測不同狀態、診斷信息。這可 以增加系統的可靠性,提供系統的性能。

    StealthChop靜音驅動技術非常適合3D打印、桌面型CNC、高端的CCTV、體外診斷設備、醫療檢 測設備等對噪音要求敏感的場合。

    TRINAMIC提供帶有StealthChop功能的模塊,包括單軸、三軸和六軸驅控模塊。傳統的控制模 式下步進電機在低速情況下會出現比較大的噪音和震動,而在StealthChop模式下即使速度很低也聽不到明顯的聲音。

    下載本文:如何消除步進電機的噪音和振動?


    免責聲明:本文為轉載文章,轉載此文目的在于傳遞更多信息,版權歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權問題,請聯系小編進行處理。


    推薦閱讀:

    適用于高性能功率器件的 SiC 隔離解決方案

    REASUNOS瑞森半導體碳化硅二極管在大功率電源上的應用

    使用FPGA實現自適應全陣列局部調光解決方案

    集成穩壓器消除了對分立元件的需求

    180 W 功率因數校正電源


    特別推薦
    技術文章更多>>
    技術白皮書下載更多>>
    熱門搜索
    ?

    關閉

    ?

    關閉

    精品久久久久久无码中文字幕一区| 亚洲高清无码在线观看| 精品一区二区三区中文字幕| 色爱无码AV综合区| 八戒理论片午影院无码爱恋| а中文在线天堂| 亚洲成av人片在线观看天堂无码| 亚欧免费无码aⅴ在线观看| 最近免费视频中文字幕大全| 中文精品无码中文字幕无码专区 | 中国少妇无码专区| 国产精品无码无需播放器| 超清无码无卡中文字幕| 亚洲国产中文v高清在线观看 | 免费无码又爽又刺激高潮视频| 中文字幕无码久久久| 最近2018中文字幕免费视频| 中文字幕人妻丝袜乱一区三区| 少妇无码太爽了不卡视频在线看 | 久久久久久国产精品无码超碰 | 国产在线无码不卡影视影院| 亚洲AV无码一区东京热久久| 97无码人妻福利免费公开在线视频 | 永久免费av无码入口国语片| 中文字幕日韩欧美| 少妇性饥渴无码A区免费| 亚洲日本中文字幕天堂网| 在线日韩中文字幕| 久草中文在线观看| 中文字幕乱码免费看电影| 中文无码熟妇人妻AV在线| 无码精品国产dvd在线观看9久| 精品无码免费专区毛片| 国产成人A亚洲精V品无码 | 人妻系列无码专区无码中出| 人妻无码久久一区二区三区免费| 亚洲AV无码成人网站久久精品大| 日韩乱码人妻无码系列中文字幕 | 久久99久久无码毛片一区二区| 久久精品无码免费不卡| 中文字幕精品无码一区二区|