<abbr id="kc8ii"><menu id="kc8ii"></menu></abbr>
  • <input id="kc8ii"><tbody id="kc8ii"></tbody></input><table id="kc8ii"><source id="kc8ii"></source></table><kbd id="kc8ii"></kbd>
    <center id="kc8ii"><table id="kc8ii"></table></center>
  • <input id="kc8ii"></input>
    <abbr id="kc8ii"></abbr>
  • <abbr id="kc8ii"></abbr>
  • <center id="kc8ii"><table id="kc8ii"></table></center>
    <abbr id="kc8ii"></abbr>
    你的位置:首頁 > 電源管理 > 正文

    這個技術將顛覆工業機器人在生產線上的地位

    發布時間:2017-01-13 責任編輯:wenwei

    【導讀】工業機器人自上個世紀六十年代誕生以來,給人感覺都是笨笨的,只會按照人類預先編制的程序完成一些重復性任務。目前,機器人技術已經有了很大的發展,最近幾年還出現了一項新技術,如果未來成功應用在工業機器人上,將具有革命性的效果。

    自從工業革命以來,機器開始工作前,都需要人先動手。在整個20世紀50年代和60年代,工程師們嘗試用機器人作為工業發展的一種手段。1969年開發成功的Stanford Arm是一個六軸機器人,它可以連續模式重復移動和組裝零部件。這個發明讓機器人開始在裝配線上實際應用,并隨之發展成了我們今天看到的機器人技術。

    工業機器人是在制造業中使用的可編程自動化系統,通常能夠在兩個或多個軸上移動。這類機器人大多屬于機械臂,并具有一定程度的自主性,這意味著不需要人的控制,他們就能執行某些任務,例如焊接、噴涂、提升、包裝以及檢測等。

    工業機器人在汽車制造中最為常見。在汽車行業中,機器人通常承擔一些精細控制的工作,比如提升重物、噴涂和焊接。而人手則完成一些更復雜的工作,比如微小零部件或引導布線。這些機械臂通常很大,因此很難在工廠里四處移動。然而,現在的機器人較之以前更靈巧,他們可以挑戰人類才能完成的更復雜工作。比如丹麥Universal Robots公司生產的協作機器人,目前正在法國克里昂的雷諾工廠里給發動機擰螺絲,以前這項精細的任務只能由人工來完成。此外,在雷諾使用的機器人重約30公斤,很容易在工作場所周圍移動。這樣,制造商就可以不用花費大量的時間和金錢重新配置工廠,縮短定制產品的制造時間。

    這個技術將顛覆工業機器人在生產線上的地位

    協作機器人

    對于傳統工業機器人而言,由于其運行時的危險性,通常需要安裝防護圍欄,跟工人隔離。而協作機器人則完全不同,通過設計,它們可與工人在同一工作站中安全協同工作。這是因為他們具備以下特性:

    •特別的設計讓他們可以在工人旁邊安全工作,一是限制力量大小避免人類受傷,二是通過傳感器避免機器人跟工人相接觸。

    •輕量化設計,允許機器人根據需要可以從這邊移動到那邊。

    •不需要太多的專業知識,讓大部分工人可以通過平板電腦或智能手機對機器人進行控制。

    川崎機器人最近發布了他們第一款協作機器人duAro,它采用低功率電機、柔軟的外表、低速度以及共享工作區監控,讓他們可以跟人類并肩協作。如果不幸發生碰撞,碰撞檢測功能會讓機器人馬上停下來??梢酝ㄟ^人手引導機械臂進行示教,2公斤負載的機械臂可以完成諸如物料搬運、組裝、機器調整和分配等任務。duAro的安裝很簡單,基座上帶有輪子,一個工人就能輕松地將機器人移動到任何需要的地方。

    人工智能

    人工智能是機器人領域中發展最快的研究領域之一。AI允許通過學習來完成需要靈巧性和特殊意識的任務,這意味著機器人可以被引入新的場景并且無需預編程就能做出正確地反應。加州大學伯克利分校的研究人員已經開發出算法,“使機器人能通過試驗以及犯錯等更接近人類的學習方式來新的任務,這是人工智能領域的一個重要里程碑。”這項技術已經成功應用于多種場合,例如組裝玩具飛機,將瓶蓋擰在水瓶上,把衣架掛在架子上,這些任務往往都無法進行預編程。

    深度學習是人工智能的另一個新分支,它的另一個名字叫人工神經網絡(ANNs),人工神經網絡是一種受生物神經網絡啟發的控制模式,用于估計取決于多個輸入的未知函數。人工神經網絡通常被設計成能互相交換信息的“神經元”連接組成的系統。這種連接有不同的數字權重,可以根據經驗進行調整,使神經網絡能夠適應輸入,從而能夠學習。“深度學習”之所以成為深度,是因為人工神經網絡的結構,神經元的層互相堆疊在一起。最底層收集一些原始數據,例如圖像、文本和聲音,每個神經元都存儲他們遇到的相關信息。層中的每個神經元將信息發送到下一層神經元,并學習比低一層神經元更抽象的信息。

    此技術已經成功應用在蘋果Siri和谷歌Street View進行語音和視覺識別。此外,這些應用還可以利用標記方向去解決更多問題,比如利用現有語音存儲數據。在非結構化3D環境中移動沒有這些方向,因此是更大的挑戰。目前在UC Berkley的實驗中使用的機器人采用具有獎勵函數的算法,該算法基于機器人做設置任務的程度提供得分。攝像機追蹤機器人手臂和腿的位置并分析周圍環境,將實時得分反饋給機器人以便進行相應的動作。相對于目標的最佳移動可以通過自己重復學習,然而,它目前只能計算大約92000個參數的“好”值,其優化時間受數據處理硬件的限制。目前,沒有關于對象位置的先前數據,學習過程需要花費大約3小時。這種技術在生產線上商用之前,還有很長的路要走,但是該技術在未來的革命性效果將使得機器人能夠從頭開始學習復雜的任務。

    本文來源于機器人網。



    推薦閱讀:


    驅動單元設計中出現了電磁兼容問題怎么辦?
    適用于USB3.0的電路保護方案
    逆變電源中的三種保護電路講解
    無人機技術突破大盤點 2017年將走出新高度
    多旋翼無人機成最熱產品,各種方案比較和發展趨勢



    要采購焊接么,點這里了解一下價格!
    特別推薦
    技術文章更多>>
    技術白皮書下載更多>>
    熱門搜索
    ?

    關閉

    ?

    關閉

    最近免费中文字幕mv电影| 精品无码久久久久久尤物| 亚洲AV蜜桃永久无码精品| 亚洲av无码一区二区乱子伦as| 国产真人无码作爱视频免费| 久久久99精品成人片中文字幕| 亚洲不卡无码av中文字幕| 亚洲av无码专区在线播放| 中文字幕乱码免费看电影| 99久久中文字幕| 久久无码中文字幕东京热| 精品无码国产自产拍在线观看蜜 | 亚洲av无码不卡私人影院| 日日摸日日踫夜夜爽无码| 久久亚洲精品无码aⅴ大香 | 天堂网在线最新版www中文网| 日无码在线观看| 久久亚洲精品无码播放| 国产Av激情久久无码天堂| 高h纯肉无码视频在线观看| 亚洲av永久无码精品秋霞电影影院 | 中文字幕av日韩精品一区二区| 无码精品A∨在线观看中文| 中文字幕免费不卡二区| 亚洲?V无码乱码国产精品 | 无码日韩人妻AV一区二区三区| 国产V亚洲V天堂无码| 国产成人无码av片在线观看不卡| 欧洲成人午夜精品无码区久久 | 久久久久亚洲Av无码专| 无码孕妇孕交在线观看| 无码国内精品人妻少妇蜜桃视频| 无码国产色欲XXXXX视频| 无码人妻精品中文字幕免费| 日韩免费无码视频一区二区三区| 毛片无码免费无码播放| 丰满熟妇乱又伦在线无码视频| 无码不卡亚洲成?人片| 中文无码熟妇人妻AV在线| 天堂亚洲国产中文在线| 中文字幕精品视频|