-
使用合適的窗口電壓監控器優化系統設計
使用窗口電壓監控器可以防止欠壓和過壓的情況出現,從而更好地調節系統電源。穩定的系統電源可保護系統或負載,以防出現潛在故障,甚至使其免遭損壞。不同的窗口電壓監控器架構提供容差、欠壓和過壓閾值設置以及輸出配置選項,以便根據應用實現設計靈活性。本文旨在通過列舉不同的架構示例,幫助工...
2024-12-10
電壓監控器 系統設計
-
功率器件熱設計基礎(六)——瞬態熱測量
功率半導體熱設計是實現IGBT、碳化硅SiC高功率密度的基礎,只有掌握功率半導體的熱設計基礎知識,才能完成精確熱設計,提高功率器件的利用率,降低系統成本,并保證系統的可靠性。
2024-12-09
功率器件 瞬態熱測量
-
在校準中使用埋入式齊納技術帶來極高精度優勢
精密測試設備依靠精確的數據轉換器,確保所有測量結果都能準確地反映受測器件的狀態。在測試和測量中,任何偏移誤差、增益誤差或有效位數減少都將對測量結果產生負面影響。然而,遺憾的是,在高精度系統中,所有這些誤差都無法完全避免。溫度漂移或長期漂移等問題最終會以增益誤差或偏移誤差的形式...
2024-12-06
齊納技術 精密測試設備
-
高精度與低功耗的醫療保健產品解決方案
隨著醫療技術的迅速發展和全球對健康管理需求的增加,高精度與低功耗的醫療保健產品正逐漸成為行業趨勢的核心。這類產品不僅能夠提供準確、及時的健康數據,還大幅延長了設備的使用壽命,滿足了便攜式和長期監測需求。從可穿戴設備到遠程健康監控系統,這些解決方案正為個人和醫療機構提供更有效的...
2024-12-06
醫療保健
-
功率器件熱設計基礎(五)——功率半導體熱容
功率半導體熱設計是實現IGBT、碳化硅SiC高功率密度的基礎,只有掌握功率半導體的熱設計基礎知識,才能完成精確熱設計,提高功率器件的利用率,降低系統成本,并保證系統的可靠性。
2024-12-06
功率器件 熱容
-
終于搞明白差模噪聲與共模噪聲
開關穩壓器的EMI分為電磁輻射和傳導輻射(CE)。本文重點討論傳導輻射,其可進一步分為兩類:共模(CM)噪聲和差模(DM)噪聲。為什么要區分CM-DM?對CM噪聲有效的EMI抑制技術不一定對DM噪聲有效,反之亦然,因此,確定傳導輻射的來源可以節省花在抑制噪聲上的時間和成本。
2024-12-04
差模噪聲與 共模噪聲
-
延長蜂窩物聯網終端產品的電池壽命
許多物聯網設備都由電池供電,而其中一項重要運作因素,就是正常使用情況下的電池壽命。延長電池壽命可以改善用戶體驗、降低維護成本并減少浪費。
2024-12-03
蜂窩物聯網 終端產品 電池壽命
-
采用創新型 C29 內核的 MCU 如何提升高壓系統的實時性能
實時微控制器 (MCU) 在幫助高壓汽車和能源基礎設施系統滿足電源效率、功率密度和安全設計要求方面發揮著至關重要的作用。無論是車載充電器 (OBC) 還是不間斷電源 (UPS),這些設備都必須在惡劣環境中為時間關鍵型任務提供快速、確定性的性能。
2024-12-03
C29 內核 MCU 高壓系統
-
【“源”察秋毫系列】纖維器件及其陣列電學測試方案詳解
使用電壓表或SMU源表等測試設備(如數字多用表的電壓測量檔等),將電壓表的探頭與纖維電學器件的兩個輸出電極相連接,確保連接牢固且接觸良好,以減少接觸電阻對測量結果的影響。當纖維電學器件處于工作狀態(如受到特定刺激,像壓電纖維器件受到外力作用、光電器件受到光照等)或在特定的電路環境...
2024-12-02
纖維器件 電學測試
- 音頻放大器的 LLC 設計注意事項
- 服務器電源設計中的五大趨勢
- 電子技術如何助力高鐵節能?
- 利用創新FPGA技術:實現USB解決方案的低功耗、模塊化與小尺寸
- 加速度傳感器不好選型?看這6個重要參數!
- 功率器件熱設計基礎(十三)——使用熱系數Ψth(j-top)獲取結溫信息
- IGBT并聯設計指南,拿下!
- ADI 多協議工業以太網交換機
- 攻略:7種傾斜傳感器的設計選擇
- 貿澤電子新品推薦:2024年第四季度推出超過10,000個新物料
- 有源蜂鳴器與無源蜂鳴器的發聲原理是什么
- 使用MSO 5/6內置AWG進行功率半導體器件的雙脈沖測試
- 車規與基于V2X的車輛協同主動避撞技術展望
- 數字隔離助力新能源汽車安全隔離的新挑戰
- 汽車模塊拋負載的解決方案
- 車用連接器的安全創新應用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall