<abbr id="kc8ii"><menu id="kc8ii"></menu></abbr>
  • <input id="kc8ii"><tbody id="kc8ii"></tbody></input><table id="kc8ii"><source id="kc8ii"></source></table><kbd id="kc8ii"></kbd>
    <center id="kc8ii"><table id="kc8ii"></table></center>
  • <input id="kc8ii"></input>
    <abbr id="kc8ii"></abbr>
  • <abbr id="kc8ii"></abbr>
  • <center id="kc8ii"><table id="kc8ii"></table></center>
    <abbr id="kc8ii"></abbr>
    你的位置:首頁 > 測試測量 > 正文

    適用于風力發電機的可靠電力電子器件

    發布時間:2010-03-19

    中心議題:
    • 不同阻斷電壓下IGBT效率的對比
    • 并聯IGBT模塊
    • 基本單元的串聯
    解決方案: 
    • 采用經驗證有效的半導體元件
    • 使用簡單的線變壓器,得到純凈的正弦波電流
    • 線路功率因數良好且總諧波失真小
    • 有功和無功功率控制
     
    在兆瓦級,大功率電力電子應用中需要大容量的半導體器件。然而,對于某些應用來說,即使是目前可以得到的最大半導體器件容量也不夠大。因此需要將它們并聯。在傳統的電力電子電路中將半導體器件并聯是非常普遍的。
      
    現在討論一種可能的方案:電力電子裝配把包含IGBT和二極管的IGBT基本單元、散熱器、直流環節電容、驅動器和保護電路、輔助電源和PWM控制器(一個獨立單元)組裝在一個三相逆變器中。這些單元可以并聯,例如用于一臺帶永磁發電機的4象限驅動風力發電機和所展示的全功率4兆瓦變換器。
      
    本文介紹一種在中壓范圍內得到更大風力發電功率的方法。該方法使用變速中壓永磁發電機的線路接口連接,沒有任何電壓和功率限制,并且采用已經證明有效的半導體器件和組件。將基本電力電子單元串聯以獲得更高的電壓,并聯以獲得更高的功率等級。
      
    不同阻斷電壓下IGBT效率的對比
      
    IGBT在電力電子電路中使用非常廣泛。如今有各種電壓等級的IGBT,廣泛用于工業應用的1200V和1700VIGBT以及3.3kV、4.5kV和6.5kV的中壓IGBT。那么哪種電壓等級最適合大功率應用呢?當上述IGBT被放置在目前可得到的最大外殼中以制造逆變器時,可以找到這個問題的答案。當然,在最優工作條件下模擬可用功率更簡單。
      
    為了做到這一點,選用了最大的標準外殼(IHM,190mm寬)。IGBT都被封裝在這個外殼中,并定義了最佳工作條件:直流運行電壓Vdc、,交流輸出電壓Vac、載波開關頻率3.6kHz以及盡可能好的冷卻條件。圖1顯示了基于給定參數而計算出的不同IGBT的可用功率。


    結果顯示,采用3.3kV、1200A獨立模塊得到的最大功率約為采用1.7kV、2400AIGBT所得功率的一半。相比之下,6.5kV、600AIGBT模塊所提供的功率僅為1.7kVIGBT的四分之一。產生這一結果的原因是IGBT模塊的損耗。如果計算圖2中三個變換器的效率,可以看到損耗比為1:2:4。
      
    對于這個對比,我們使用了相同的載波開關頻率fsw=3.6kHz。這使得我們有機會采用相對較小的濾波器設計逆變器。使用不同的載波開關頻率,將導致所用的輸出正弦濾波器不同。基于上述種種原因,可以看出,采用1.7kVIGBT可實現最大效率,它是一款單位模塊價格非常合理的標準工業產品。
      [page]
    不同阻斷電壓下IGBT效率的對比.
      
    運行條件是:fsw=3,6KHz、cosφ=0.9,相同模塊和冷卻條件下三相逆變器的運行
      
    1.7kVIGBT封裝在不同的模塊外殼中。為了對比,我們可以采用最大的單管模塊IHM2.4kA、1.7kV,將兩個這樣的模塊和一個尺寸與長度相近的雙管模塊SKiiP1513GB172做比較。如果兩個SKiiP在散熱器上背靠背放置,則可得到一個電流是2x1.5kA=3.0kA的半橋(外殼溫度=25℃時),或者電流為2.25kA的半橋(外殼溫度為70℃時)。
      
    兩個單管模塊將提供一個2.4kA的半橋。比較計算的結果可以看到,與放置在最大外殼中的標準模塊相比,采用SKiiP的方案可在整個開關頻率范圍內提供更高的輸出電流。可用逆變器輸出功率與開關頻率的關系見圖3。


      
    如果采用了更強大的SKiiP模塊,如使用氮化鋁作為陶瓷基板的SKiiP1.8kA,1.7kV,可從三相逆變器獲得更高的功率,即1800kVA。

    圖4配備了1800kVA基本單元的示例
      [page]
    并聯IGBT模塊
      
    以下方案對于IGBT模塊的并聯運行是可行的。
      
    ⑴ 一臺三相逆變器用于整個功率的提供,相腳是由許多并聯的IGBT模塊和一個強大的驅動器組成。每個IGBT模塊必須有自己的柵極電阻與對稱直流環節和交流輸出連接。[1]
      
    ⑵三相IGBT基本單元硬并聯。
      
    整個系統是通過一臺控制器及其PWM信號控制。所有三相逆變器都連接到一個公共的直流環節電壓。對于每個獨立基本單元驅動器,采用驅動器并聯板實現并聯。驅動器工作時間小的變化(小于100ns)是通過小的交流輸出扼流圈進行補償的(電感<5μH)。所有的三相逆變器同時運行,但存在小的時延,小時延可通過額外的交流扼流圈進行補償。采用對稱布局和IGBT飽和壓降的正溫度系數來保證適當的負載電流均衡。[2]
      
    第2項所述的系統每個基本單元附帶PWM信號的附加校正。并聯基本單元的精確負載電流均衡是由附加PWM校正控制的。
      
    將幾個帶同步PWM的單元并聯運行,且用附加PWM控制消除循環電流。[3]
      
    每個基本單元都使用電氣負載隔離。各個基本單元都有自己的控制器,通過絕緣繞組給負載提供電力。PWM是獨立的、非同步的、自由運行的信號,且每個基本單元都有自己單獨的直流環節。在電網側,每個基本單元有自己的正弦LC濾波器。假如輸出也是電氣隔離的,則不同直流環節間不存在循環電流。這是將帶有標準獨立控制器的標準獨立基本單元并聯起來的最簡單的方法。
      
    一個基于發電機側電氣隔離的簡單設計如圖5所示。三個并聯的帶分立電機繞組的獨立4象限驅動器。該驅動器可以和一個或兩個驅動器并聯運行。



    三個1500kVA4Q驅動單元連接到永磁風力發電機單獨的繞組上。每個4象限驅動器都是標準的,擁有自己的發電機側和電網側控制器。第四個控制器的目的是提供統一的發電機扭矩共享。萬一運行過程中一個4象限驅動器出現了問題,其余驅動器的運行不會被中斷。所描述的系統已應用于3.6MW風力發電機,該風力發電機擁有一臺帶有三個獨立繞組的永磁發電機。該系統為最多達12個四象限驅動器并聯而研制,可用于連接12臺發電機或12個發電機繞組。[4]

    基本單元的串聯
      風力發電機設計工程師需要將以下諸方面考慮到他們的設計中。
      ⑴大功率風力發電機;
      ⑵低損耗;
      ⑶變速;
      ⑷高效率;
      ⑸采用經驗證有效的半導體元件;
      ⑹使用簡單的線變壓器,得到純凈的正弦波電流;
      ⑺線路功率因數良好且總諧波失真小;
      ⑻有功和無功功率控制;
      ⑼模塊化設計,適合不同的功率和電壓且安裝快速;
      ⑽可靠性高;
      ⑾最低的成本。
      [page]
    可選的最佳方案:中壓發電機。在未來的大功率風力發電機設計中,中壓發電機是必不可少的。然而,中壓硅片并不適用于此類應用。因此,正確的解決方案是將基本單元串聯起來。例如:一臺額定輸出電壓為6.3kV的5MW風力發電機,輸出電流為3x436Arms。整流過的變速發電機電壓為1kV~10kV的直流電壓。
      
    這樣變化的電壓如何才能連入電網?每個風力發電機需要有自己的變壓器用來與電網相連。電網的電壓應在20kV-30kV范圍,這應該是變壓器的輸出電壓。
      
    變壓器可由幾個三相繞組組成,這里用了10個,每個為3x690V,作為輸入電壓。
      
    基于單元的中壓風力發電機
      
    新型中壓風力發電機的原理如圖6所示。



    每個三相繞組附帶一個基本單元和一個600kVA的三相逆變器。第四個IGBT管腳可被連接到每個基本單元的前面,這種排列可被稱為中壓單元。所有單元都可如圖6所示串聯起來。如果第四管腳的IGBT開關是關斷的,發電機的直流電流將對單元直流環節電壓進行充電。單元電網側三相逆變器放電,控制自己的直流環節電壓。對于3x690V交流電壓,直流環節電壓將為1.05kV。10個串聯的基本單元可以產生高達10×1.05kV=10.5kV的反電動勢(EMF)。

    電壓仍然與整流后的發電機電壓保持平衡。如果發電機轉速下降,發電機電壓也會變低。因此,為控制整流后的直流電流,也是為控制發電機的轉矩,不得不旁路掉部分單元。如果旁路掉5個單元,剩余的反電動勢是5×1.05kV=5.25kV。旁路掉更多的單元會增加直流電流和發電機轉矩。被旁路掉的單元可向電網提供全部的無功功率。如果某個單元失效,它也將被旁路掉。單元直流環節電壓最大值是1.2kV,因此即使僅有9個單元串聯也可承載高達9×1.2kV=10.8kV的整流后發電機電壓。

    帶中壓同步發電機的變速風力發電機
      
    帶中壓同步發電機的變速風力發電機特點如下。
      ⑴發電機直流電壓范圍從0至Vdcmax;
      ⑵每單元直流電壓1.05kV(采用1.7kV硅片);
      ⑶Vdcmax.percell=1.2kV;
      ⑷單元數量=Vdcmax/Vcell+1;
      ⑸單元功率:Pgenmax/單元數量;
      ⑹系統冗余(+1);
      ⑺單元導通時間在0%-100%之間變化;
      ⑻關斷的單元可以產生全部的無功功率;
      ⑼不論功率高低,效率都高;
      ⑽線路測紋波頻率=Ncell×Fswcell;
      ⑾簡單的網側變壓器。
      
    大功率應用使用多個IGBT模塊。然而,使用更多的帶獨立控制的開關要好的多。例如,用幾個并聯或串聯的單元而不是一個巨大的單個單元。
      
    優點如下:
      ⑴線路的功率因數好、電流總諧波失真小、開關頻率更低、更少的無源器件;
      ⑵模塊化設計,適合不同的功率和電壓且安裝快速;
      ⑶采用經驗證有效的半導體元件;
      ⑷更高的效率;
      ⑸高可靠性;
      ⑹極低的每kW成本。
    要采購開關么,點這里了解一下價格!
    特別推薦
    技術文章更多>>
    技術白皮書下載更多>>
    熱門搜索
    ?

    關閉

    ?

    關閉

    五月婷婷无码观看| 国产日韩AV免费无码一区二区| 亚洲 欧美 中文 在线 视频 | 新版天堂资源中文8在线| 最近2019中文字幕大全第二页| 色偷偷一区二区无码视频| 亚洲无码精品浪潮| 久久久久久精品无码人妻| 国产精品无码v在线观看| 精品久久久无码中文字幕天天| 免费人妻无码不卡中文字幕系| 熟妇人妻VA精品中文字幕| 亚洲av无码成人黄网站在线观看| 中文字幕热久久久久久久| 国产品无码一区二区三区在线蜜桃 | 国产成人无码免费网站| 免费中文字幕视频| 精品久久久久久无码人妻热| 中文字幕无码毛片免费看| 人妻无码精品久久亚瑟影视| 亚洲天堂中文字幕在线| 亚洲AⅤ无码一区二区三区在线| 极品粉嫩嫩模大尺度无码视频| 无码人妻精品中文字幕免费东京热 | 精品亚洲综合久久中文字幕| 日韩精品无码一区二区三区免费 | 国产精品无码素人福利不卡| 中文字幕av高清有码| 亚洲欧美综合中文| 免费A级毛片无码视频| 在线天堂资源www在线中文| 亚洲国产精品成人AV无码久久综合影院| 无码丰满熟妇juliaann与黑人 | 高潮潮喷奶水飞溅视频无码| 亚洲人成无码网WWW| 无码国产精品一区二区免费3p | 一本大道久久东京热无码AV| 精品国产a∨无码一区二区三区| 中文字幕在线观看国产| 中文亚洲AV片不卡在线观看 | 亚洲不卡中文字幕无码|