<abbr id="kc8ii"><menu id="kc8ii"></menu></abbr>
  • <input id="kc8ii"><tbody id="kc8ii"></tbody></input><table id="kc8ii"><source id="kc8ii"></source></table><kbd id="kc8ii"></kbd>
    <center id="kc8ii"><table id="kc8ii"></table></center>
  • <input id="kc8ii"></input>
    <abbr id="kc8ii"></abbr>
  • <abbr id="kc8ii"></abbr>
  • <center id="kc8ii"><table id="kc8ii"></table></center>
    <abbr id="kc8ii"></abbr>
    你的位置:首頁 > 電路保護 > 正文

    如何在設計GTO逆變器時合理設計緩沖電路參數

    發布時間:2021-08-27 責任編輯:lina

    【導讀】緩沖電路參數值直接影響GTO的關斷性能及整個GTO逆變器的工作性能。因此如何在設計GTO逆變器時合理設計緩沖電路參數,便成為重要的問題。
      
    1 引言
     
    緩沖電路參數值直接影響GTO的關斷性能及整個GTO逆變器的工作性能。因此如何在設計GTO逆變器時合理設計緩沖電路參數,便成為重要的問題。
     
    本文通過對GTO關斷過程中陽極電流與陽極電壓波形的分析,提出并論證了GTO陽極電流波形與緩沖電路參數無關、緩沖二極管的反向恢復過程與緩沖電路參數無關的論點。在此基礎上,提出了一種簡便、實用的緩沖電路參數優化設計方案。可根據對GTO裝置性能的具體要求確定GTO緩沖電路元件  優參數。在對GTO關斷過程中陽極電壓及關斷功耗波形進行仿真時,為提高仿真,采用了實測的陽極關斷電流波形。并據此推導出關斷功耗波形。仿真結果與實驗波形比較,誤差極小。本文提出了一種以“綜合指標”作為目標函數的緩沖電路參數尋優方案。
     
    2 利用陽極電流波形對陽極電壓波形仿真的前提條件
     
    GTO緩沖電路可等效為圖1所示電路。如要利用實測的陽極電流對陽極電壓進行仿真,首先需要證明以下兩個條件成立:
     
    (1)GTO陽極電流波形與緩沖電路參數無關;
     
    (2)緩沖二極管的反向恢復過程與緩沖電路參數無關。
     
    GTO緩沖電路示意圖
     
    如何在設計GTO逆變器時合理設計緩沖電路參數
    圖1 GTO緩沖電路示意圖
     
    2.1 GTO陽極電流波形與緩沖電路參數無關
     
    圖2為GTO關斷時的陽極電流波形。整個過程可分為3個階段:即存儲時間段、下降時間段及拖尾時間段。
     
    GTO陽極關斷電流波形示意圖
     
    如何在設計GTO逆變器時合理設計緩沖電路參數
    圖2 GTO陽極關斷電流波形示意圖
     
    在存儲時間段及下降時間段中,存儲時間ts及下降時間tf值僅取決于門極抽取能力及GTO內部結構,而與緩沖電路參數無關。此兩段的陽極電流波形也與緩沖電路參數無關。
     
    在拖尾時間段,拖尾電流基本上由下降時間段的陽極電流波形及結溫決定,與緩沖電路參數無關。
     
    圖3中8條曲線是CS=2,3,4,5μF時的陽極電流及陽極電壓波形。可見,在緩沖電路參數變化后,陽極電壓波形變化較大,而4條陽極電流曲線基本上完全重合。由此實驗可驗證以上分析的正確性。
     
    緩沖電路參數改變后的陽極電流
     
    如何在設計GTO逆變器時合理設計緩沖電路參數
    圖3 緩沖電路參數改變后的陽極電流、陽極電壓波形
     
    圖中曲線(1),(2),(3),(4)為緩沖電路參數改變后的實測陽極電壓波形;曲線(5),(6),(7),(8)為緩沖電路參數改變后的實測陽極電流波形。
     
    2.2 緩沖二極管的反向恢復過程與緩沖電路參數無關
     
    儲存電荷Qr及恢復時間trr是緩沖二極管反向恢復過程中兩個重要參數。在分析GTO關斷過程時,可近似認為Qr,trr為常量。由圖4可證明這一點。圖4是改變緩沖電阻支路分布電感后測得的緩沖電阻支路電流及緩沖二極管支路電流。可見,在Lrs改變后,irs變化很大,而ids幾乎不變。即可認為trr只與緩沖二極管本身的特性有關。
     
    緩沖二極管恢復反向阻斷能力后的ids
     
      如何在設計GTO逆變器時合理設計緩沖電路參數
    圖4 緩沖二極管恢復反向阻斷能力后的ids,irs波形
     
    圖中曲線(1),(2),(3)為Lrs改變前、后的實測緩沖電阻支路電流波形。
     
    曲線(4),(5),(6)為Lrs改變前、后的實測緩沖二極管支路電流波形;
     
    如圖5所示的緩沖二極管反向恢復特性曲線,t》t5后的緩沖二極管上電流近似認為是1條二次曲線,可以較好地說明問題。曲線方程為:公式(1)公式(2)
     
    式中trr—緩沖二極管恢復時間;
     
    t5—ids=Ism的時間;
     
    Ido—t=t7時緩沖二極管的電流值。
     
    緩沖二極管的反向恢復特性
     
    3 陽極電壓波形仿真
     
    利用GTO陽極電壓與陽極電流間的數學模型,使用MATLAB語言進行計算機仿真,可由實測的陽極電流波形及緩沖電路參數得到陽極電壓的仿真波形。仿真波形與實測波形相比,誤差極小。如圖6所示,圖中曲線為CS=2μF及5μF條件下實際測得的陽極電壓波形及相應的仿真波形。可見,仿真  可滿足尋優要求。
     
     
    免責聲明:本文為轉載文章,轉載此文目的在于傳遞更多信息,版權歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權問題,請電話或者郵箱聯系小編進行侵刪。
    特別推薦
    技術文章更多>>
    技術白皮書下載更多>>
    熱門搜索
    ?

    關閉

    ?

    關閉

    精品无码综合一区| 国产aⅴ激情无码久久| 中文字幕日韩精品在线| 亚洲爆乳无码一区二区三区| 日韩精品无码Av一区二区| 最近2019免费中文字幕视频三| 亚洲人成无码网站| 中文字幕免费不卡二区| 国产成人无码AV一区二区在线观看 | 亚洲av无码无在线观看红杏| 日韩专区无码人妻| 乱人伦中文字幕在线看| 久久综合一区二区无码| 自慰无码一区二区三区| 国产乱码精品一区二区三区中文| 午夜不卡久久精品无码免费| 天堂资源中文最新版在线一区| 无码人妻一区二区三区免费看| 人妻少妇精品视中文字幕国语| 人妻无码一区二区三区AV| 亚洲欧美中文日韩V在线观看| 国产精品无码一区二区在线| 国产成人无码一二三区视频 | 亚洲成A人片在线观看无码3D| 国产AV无码专区亚洲AV手机麻豆 | 熟妇人妻系列av无码一区二区| 日产无码1区2区在线观看| 亚洲一区精品无码| 日本精品中文字幕| 无码精品人妻一区二区三区AV| 无码国内精品久久人妻| 亚洲精品欧美二区三区中文字幕| 亚洲va中文字幕无码| 国产成A人亚洲精V品无码| 亚洲国产精品无码久久| 日韩av无码免费播放| 中文字幕日本在线观看| 亚洲国产综合精品中文第一| 国产AV无码专区亚洲A∨毛片| 熟妇无码乱子成人精品| 亚洲精品中文字幕无码蜜桃|