<abbr id="kc8ii"><menu id="kc8ii"></menu></abbr>
  • <input id="kc8ii"><tbody id="kc8ii"></tbody></input><table id="kc8ii"><source id="kc8ii"></source></table><kbd id="kc8ii"></kbd>
    <center id="kc8ii"><table id="kc8ii"></table></center>
  • <input id="kc8ii"></input>
    <abbr id="kc8ii"></abbr>
  • <abbr id="kc8ii"></abbr>
  • <center id="kc8ii"><table id="kc8ii"></table></center>
    <abbr id="kc8ii"></abbr>
    你的位置:首頁 > 電路保護 > 正文

    功率MOSFET損壞模式及分析

    發布時間:2020-02-18 責任編輯:lina

    【導讀】本文結合功率MOSFET管失效分析圖片不同的形態,論述了功率MOSFET管分別在過電流和過電壓條件下損壞的模式,并說明了產生這樣的損壞形態的原因,也分析了功率MOSFET管在關斷及開通過程中,發生失效形態的差別,從而為失效是在關斷還是在開通過程中發生損壞提供了判斷依據。
        
    摘要
    本文結合功率MOSFET管失效分析圖片不同的形態,論述了功率MOSFET管分別在過電流和過電壓條件下損壞的模式,并說明了產生這樣的損壞形態的原因,也分析了功率MOSFET管在關斷及開通過程中,發生失效形態的差別,從而為失效是在關斷還是在開通過程中發生損壞提供了判斷依據。給出了測試過電流和過電壓的電路圖。同時,也分析了功率MOSFET管在動態老化測試中慢速開通及在電池保護電路應用中慢速關斷時,較長時間工作在線性區時,損壞的形態。最后,結合實際的應用,論述了功率MOSFET通常會產生過電流和過電壓二種混合損壞方式損壞機理和過程。
     
    關鍵詞:過流,過壓,熱點,線性區, 過電性應力
     
    0 前言
    目前,功率MOSFET管廣泛地應用于開關電源系統及其它的一些功率電子電路中,然而,在實際的應用中,通常,在一些極端的邊界條件下,如系統的輸出短路及過載測試,輸入過電壓測試以及動態的老化測試中,功率MOSFET有時候會發生失效損壞。工程師將損壞的功率MOSFET送到半導體原廠做失效分析后,得到的失效分析報告的結論通常是過電性應力EOS,無法判斷是什么原因導致MOSFET的損壞。
     
    本文將通過功率MOSFET管的工作特性,結合失效分析圖片中不同的損壞形態,系統的分析過電流損壞和過電壓損壞,同時,根據損壞位置不同,分析功率MOSFET管的失效是發生在開通的過程中,還是發生在關斷的過程中,從而為設計工程師提供一些依據,來找到系統設計的一些問題,提高電子系統的可靠性。
     
    1、過電壓和過電流測試電路
     
    過電壓測試的電路圖如圖1(a)所示,選用40V的功率MOSFET:AON6240,DFN5*6的封裝。其中,所加的電源為60V,使用開關來控制,將60V的電壓直接加到AON6240的D和S極,熔絲用來保護測試系統,功率MOSFET損壞后,將電源斷開。測試樣品數量:5片。
     
    過電流測試的電路圖如圖2(b)所示,選用40V的功率MOSFET:AON6240,DFN5*6的封裝。首先合上開關A,用20V的電源給大電容充電,電容C的容值:15mF,然后斷開開關A,合上開關B,將電容C的電壓加到功率MOSFET的D和S極,使用信號發生器產生一個電壓幅值為4V、持續時間為1秒的單脈沖,加到功率MOSFET的G極。測試樣品數量:5片。
     
     
    功率MOSFET損壞模式及分析 
    (a):過電壓測試
     
    功率MOSFET損壞模式及分析
    (b):過電流測試
    圖1::測試電路圖
     
    2、過電壓和過電流失效損壞
     
    將過電壓和過電流測試損壞的功率MOSFET去除外面的塑料外殼,對露出的硅片正面失效損壞的形態的圖片,分別如圖2(a)和圖2(b)所示。
     
    功率MOSFET損壞模式及分析
    (a):過電壓損壞
     
    功率MOSFET損壞模式及分析
    (b):過電流損壞
    圖2:失效圖片
     
    從圖2(a)可以看到:過電壓的失效形態是在硅片中間的某一個位置產生一個擊穿小孔洞,通常稱為熱點,其產生的原因就是因為過壓而產生雪崩擊穿,在過壓時,通常導致功率MOSFET內部寄生三極管的導通[1],由于三極管具有負溫度系數特性,當局部流過三極管的電流越大時,溫度越高,而溫度越高,流過此局部區域的電流就越大,從而導致功率MOSFET內部形成局部的熱點而損壞。
     
    硅片中間區域是散熱條件最差的位置,也是最容易產生熱點的地方,可以看到,上圖中,擊穿小孔洞即熱點,正好都位于硅片的中間區域。
     
    在過流損壞的條件下,圖2(b )的可以看到:所有的損壞位置都是發生的S極,而且比較靠近G極,因為電容的能量放電形成大電流,全部流過功率MOSFET,所有的電流全部要匯集中S極,這樣,S極附近產生電流 集中,因此溫度最高,也最容易產生損壞。
     
    注意到,在功率MOSFET內部,是由許多單元并聯形成的,如圖3(a)所示,其等效的電路圖如圖3(b )所示,在開通過程中,離G極近地區域,VGS的電壓越高,因此區域的單元流過電流越大,因此在瞬態開通過程承擔更大的電流,這樣,離G極近的S極區域,溫度更高,更容易因過流產生損壞。
     
    功率MOSFET損壞模式及分析
    (a) :內部結構     (b):等效電路
    圖3:功率MOSFET內部結構及等效電路
     
    3、過電壓和過電流混合失效損壞
     
    在實際應用中,單一的過電流和過電流的損壞通常很少發生,更多的損壞是發生過流后,由于系統的過流保護電路工作,將功率MOSFET關斷,這樣,在關斷的過程中,發生過壓即雪崩。從圖4可以看到功率MOSFET先過流,然后進入雪崩發生過壓的損壞形態。
     
    功率MOSFET損壞模式及分析
    圖4:過流后再過壓損壞形態
     
    可以看到,和上面過流損壞形式類似,它們也發生在靠近S極的地方,同時,也有因為過壓產生的擊穿的洞坑,而損壞的位置遠離S極,和上面的分析類似,在關斷的過程,距離G極越遠的位置,在瞬態關斷過程中,VGS的電壓越高,承擔電流也越大,因此更容易發生損壞。
     
    4、線性區大電流失效損壞
     
    在電池充放電保護電路板上,通常,負載發生短線或過流電,保護電路將關斷功率MOSFET,以免電池產生過放電。但是,和通常短路或過流保護快速關斷方式不同,功率MOSFET以非常慢的速度關斷,如下圖5所示,功率MOSFET的G極通過一個1M的電阻,緩慢關斷。從VGS波形上看到,米勒平臺的時間高達5ms。米勒平臺期間,功率MOSFET工作在放大狀態,即線性區。
     
    功率MOSFET工作開始工作的電流為10A,使用器件為AO4488,失效的形態如圖5(c)所示。當功率MOSFET工作在線性區時,它是負溫度系數[2],局部單元區域發生過流時,同樣會產生局部熱點,溫度越高,電流越大,導致溫度更一步增加,然后過熱損壞。可以看出,其損壞的熱點的面積較大,是因為此區域過一定時間的熱量的積累。
     
    另外,破位的位置離G極較遠,損壞同樣發生的關斷的過程,破位的位置在中間區域,同樣,也是散熱條件最差的區域。
     
    在功率MOSFET內部,局部性能弱的單元,封裝的形式和工藝,都會對破位的位置產生影響。
     
    功率MOSFET損壞模式及分析
    (a) :電池保護板電路    (b):工作波形
     
    功率MOSFET損壞模式及分析
    (c):失效圖片
    圖5:電池保護電路板工作波形及MOSFET失效形態
     
    一些電子系統在起動的過程中,芯片的VCC電源,也是功率MOSFET管的驅動電源建立比較慢,如在照明中,使用PFC的電感繞組給PWM控制芯片供電,這樣,在起動的過程中,功率MOSFET由于驅動電壓不足,容易進入線性區工作。在進行動態老化測試的時候,功率MOSFET不斷的進入線性區工作,工作一段時間后,就會形成局部熱點而損壞。
     
    使用AOT5N50作測試,G極加5V的驅動電壓,做開關機的重復測試,電流ID=3,工作頻率8Hz重復450次后,器件損壞,波形和失效圖片如圖6(b)和(c)所示??梢钥吹?,器件形成局部熱點,而且離G極比較近,因此,器件是在開通過程中,由于長時間工作線性區產生的損壞。
     
    圖6(a)是器件 AOT5N50應用于日光燈電子鎮流器的PFC電路,系統在動態老化測試過程生產失效的圖片,而且測試實際的電路,在起動過程中,MOSFET實際驅動電壓只有5V左右,MOSFET相當于有很長的一段時間工作在線性區,失效形態和圖6(b)相同。
     
    功率MOSFET損壞模式及分析
    (a):失效圖片    (b):失效圖片
     
    功率MOSFET損壞模式及分析
    (c):失效波形
    圖6:MOSFET開通工作在線性區工作波形及失效形態
     
    5、結論
     
    (1)功率MOSFET單一的過電壓損壞形態通常是在中間散熱較差的區域產生一個局部的熱點,而單一的過電流的損壞位置通常是在電流集中的靠近S極的區域。實際應用中,通常先發生過流,短路保護MOSFET關斷后,又經歷雪崩過壓的復合損壞形態。
    (2)損壞位置距離G極近,開通過程中損壞的幾率更大;損壞位置距離G極遠,關斷開通過程中損壞幾率更大。
     
    (3)功率MOSFET在線性區工作時,產生的失效形態也是局部的熱點,熱量的累積影響損壞熱點洞坑的大小。
     
    (4)散熱條件是決定失效損壞發生位置的重要因素,芯片的封裝類型及封裝工藝影響芯片的散熱條件。另外,芯片生產工藝產生單元性能不一致而形成性能較差的單元,也會影響到損壞的位置。
    (來源:21ic電子網,作者:劉松)
     
     
    推薦閱讀:
    詳解柔性電路板的焊接方法及注意事項
    如何為物聯網設備收集熱能和振動能量
    斷路器、接觸器、繼電器,傻傻分不清?
    如何做到鋰離子電池性能MAX?
    【干貨】開關電源RC吸收電路的分析!
    要采購開關么,點這里了解一下價格!
    特別推薦
    技術文章更多>>
    技術白皮書下載更多>>
    熱門搜索
    ?

    關閉

    ?

    關閉

    五月天中文字幕mv在线| 亚洲AV无码无限在线观看不卡| 中文字幕丰满伦子无码| 中文字幕国产视频| 国产精品无码日韩欧| 中文字幕乱偷无码AV先锋| 中文字幕日韩精品无码内射| 久久午夜夜伦鲁鲁片免费无码影视| 亚洲VA中文字幕无码一二三区| 久久久久亚洲AV无码专区网站| 无码精品人妻一区二区三区中| 久久无码精品一区二区三区| 中文字幕精品一区| AV成人午夜无码一区二区| 性无码专区一色吊丝中文字幕| 人妻精品久久久久中文字幕69| 中文一国产一无码一日韩| 一本色道无码道在线| 亚洲AV无码久久| 久久精品中文字幕第23页| 国产精品无码久久综合网| 在人线AV无码免费高潮喷水| 亚洲 欧美 中文 在线 视频| 亚洲AV无码国产精品色午友在线| 亚洲国产精彩中文乱码AV| 毛片无码免费无码播放| 中文字幕国产91| 无码人妻精品中文字幕| 国产精品xxxx国产喷水亚洲国产精品无码久久一区| 日韩中文字幕在线观看| 成人无码一区二区三区| 亚洲av中文无码乱人伦在线咪咕| 波多野结衣中文在线播放| 蜜臀AV无码国产精品色午夜麻豆| 亚洲成AV人片在线观看无码| 最近免费字幕中文大全视频 | 国产乱子伦精品无码码专区 | 亚洲AV综合色区无码一区爱AV| 最近更新中文字幕第一页| 中文字幕Av一区乱码| 亚洲Av无码乱码在线播放|