<abbr id="kc8ii"><menu id="kc8ii"></menu></abbr>
  • <input id="kc8ii"><tbody id="kc8ii"></tbody></input><table id="kc8ii"><source id="kc8ii"></source></table><kbd id="kc8ii"></kbd>
    <center id="kc8ii"><table id="kc8ii"></table></center>
  • <input id="kc8ii"></input>
    <abbr id="kc8ii"></abbr>
  • <abbr id="kc8ii"></abbr>
  • <center id="kc8ii"><table id="kc8ii"></table></center>
    <abbr id="kc8ii"></abbr>
    你的位置:首頁 > 電路保護(hù) > 正文

    高斯濾波器的原理及實(shí)現(xiàn)過程

    發(fā)布時(shí)間:2019-09-02 責(zé)任編輯:xueqi

    【導(dǎo)讀】高斯濾波器是一種線性濾波器,能夠有效的抑制噪聲,平滑圖像。其作用原理和均值濾波器類似,都是取濾波器窗口內(nèi)的像素的均值作為輸出。本文主要介紹了高斯濾波器的原理及其實(shí)現(xiàn)過程。
     
    其窗口模板的系數(shù)和均值濾波器不同,均值濾波器的模板系數(shù)都是相同的為1;而高斯濾波器的模板系數(shù),則隨著距離模板中心的增大而系數(shù)減小。所以,高斯濾波器相比于均值濾波器對(duì)圖像個(gè)模糊程度較小。
     
    什么是高斯濾波器
     
    既然名稱為高斯濾波器,那么其和高斯分布(正態(tài)分布)是有一定的關(guān)系的。一個(gè)二維的高斯函數(shù)如下:
     
     
    其中(x,y)(x,y)為點(diǎn)坐標(biāo),在圖像處理中可認(rèn)為是整數(shù);σσ是標(biāo)準(zhǔn)差。要想得到一個(gè)高斯濾波器的模板,可以對(duì)高斯函數(shù)進(jìn)行離散化,得到的高斯函數(shù)值作為模板的系數(shù)。例如:要產(chǎn)生一個(gè)3×33×3的高斯濾波器模板,以模板的中心位置為坐標(biāo)原點(diǎn)進(jìn)行取樣。模板在各個(gè)位置的坐標(biāo),如下所示(x軸水平向右,y軸豎直向下)
     
     
    這樣,將各個(gè)位置的坐標(biāo)帶入到高斯函數(shù)中,得到的值就是模板的系數(shù)。
    對(duì)于窗口模板的大小為(2k+1)×(2k+1),模板中各個(gè)元素值的計(jì)算公式如下:
     
     
    這樣計(jì)算出來的模板有兩種形式:小數(shù)和整數(shù)。
    小數(shù)形式的模板,就是直接計(jì)算得到的值,沒有經(jīng)過任何的處理;
     
    整數(shù)形式的,則需要進(jìn)行歸一化處理,將模板左上角的值歸一化為1,下面會(huì)具體介紹。使用整數(shù)的模板時(shí),需要在模板的前面加一個(gè)系數(shù),系數(shù)為
    也就是模板系數(shù)和的倒數(shù)。
     
    高斯模板的生成
     
    知道模板生成的原理,實(shí)現(xiàn)起來也就不困難了
     
    void generateGaussianTemplate(double window[][11], int ksize, double sigma)
    {
        static const double pi = 3.1415926;
        int center = ksize / 2; // 模板的中心位置,也就是坐標(biāo)的原點(diǎn)
        double x2, y2;
        for (int i = 0; i < ksize; i++)
        {
            x2 = pow(i - center, 2);
            for (int j = 0; j < ksize; j++)
            {
                y2 = pow(j - center, 2);
                double g = exp(-(x2 + y2) / (2 * sigma * sigma));
                g /= 2 * pi * sigma;
                window[i][j] = g;
            }
        }
        double k = 1 / window[0][0]; // 將左上角的系數(shù)歸一化為1
        for (int i = 0; i < ksize; i++)
        {
            for (int j = 0; j < ksize; j++)
            {
                window[i][j] *= k;
            }
        }
    }
     
     
    需要一個(gè)二維數(shù)組,存放生成的系數(shù)(這里假設(shè)模板的最大尺寸不會(huì)超過11);第二個(gè)參數(shù)是模板的大小(不要超過11);第三個(gè)參數(shù)就比較重要了,是高斯分布的標(biāo)準(zhǔn)差。
     
    生成的過程,首先根據(jù)模板的大小,找到模板的中心位置ksize/2。然后就是遍歷,根據(jù)高斯分布的函數(shù),計(jì)算模板中每個(gè)系數(shù)的值。
     
    需要注意的是,最后歸一化的過程,使用模板左上角的系數(shù)的倒數(shù)作為歸一化的系數(shù)(左上角的系數(shù)值被歸一化為1),模板中的每個(gè)系數(shù)都乘以該值(左上角系數(shù)的倒數(shù)),然后將得到的值取整,就得到了整數(shù)型的高斯濾波器模板。
     
    下面截圖生成的是,大小為3×3,σ=0.83×3,σ=0.8的模板
     
     
    對(duì)上述解結(jié)果取整后得到如下模板:
     
     
    這個(gè)模板就比較熟悉了,其就是根據(jù)σ=0.8的高斯函數(shù)生成的模板。
    至于小數(shù)形式的生成也比較簡(jiǎn)單,去掉歸一化的過程,并且在求解過程后,模板的每個(gè)系數(shù)要除以所有系數(shù)的和。具體代碼如下:
    void generateGaussianTemplate(double window[][11], int ksize, double sigma)
    {
        static const double pi = 3.1415926;
        int center = ksize / 2; // 模板的中心位置,也就是坐標(biāo)的原點(diǎn)
        double x2, y2;
        double sum = 0;
        for (int i = 0; i < ksize; i++)
        {
            x2 = pow(i - center, 2);
            for (int j = 0; j < ksize; j++)
            {
                y2 = pow(j - center, 2);
                double g = exp(-(x2 + y2) / (2 * sigma * sigma));
                g /= 2 * pi * sigma;
                sum += g;
                window[i][j] = g;
            }
        }
        //double k = 1 / window[0][0]; // 將左上角的系數(shù)歸一化為1
        for (int i = 0; i < ksize; i++)
        {
            for (int j = 0; j < ksize; j++)
            {
                window[i][j] /= sum;
            }
        }
    }
     
    3×3,σ=0.8的小數(shù)型模板。
     
     
    σσ值的意義及選取
     
    通過上述的實(shí)現(xiàn)過程,不難發(fā)現(xiàn),高斯濾波器模板的生成最重要的參數(shù)就是高斯分布的標(biāo)準(zhǔn)差σσ。標(biāo)準(zhǔn)差代表著數(shù)據(jù)的離散程度,如果σσ較小,那么生成的模板的中心系數(shù)較大,而周圍的系數(shù)較小,這樣對(duì)圖像的平滑效果就不是很明顯;反之,σσ較大,則生成的模板的各個(gè)系數(shù)相差就不是很大,比較類似均值模板,對(duì)圖像的平滑效果比較明顯。
     
    來看下一維高斯分布的概率分布密度圖:
     
     
    橫軸表示可能得取值x,豎軸表示概率分布密度F(x),那么不難理解這樣一個(gè)曲線與x軸圍成的圖形面積為1。σσ(標(biāo)準(zhǔn)差)決定了這個(gè)圖形的寬度,可以得出這樣的結(jié)論:σσ越大,則圖形越寬,尖峰越小,圖形較為平緩;σσ越小,則圖形越窄,越集中,中間部分也就越尖,圖形變化比較劇烈。這其實(shí)很好理解,如果sigma也就是標(biāo)準(zhǔn)差越大,則表示該密度分布一定比較分散,由于面積為1,于是尖峰部分減小,寬度越寬(分布越分散);同理,當(dāng)σσ越小時(shí),說明密度分布較為集中,于是尖峰越尖,寬度越窄!
     
    于是可以得到如下結(jié)論:
    σσ越大,分布越分散,各部分比重差別不大,于是生成的模板各元素值差別不大,類似于平均模板;
    σσ越小,分布越集中,中間部分所占比重遠(yuǎn)遠(yuǎn)高于其他部分,反映到高斯模板上就是中心元素值遠(yuǎn)遠(yuǎn)大于其他元素值,于是自然而然就相當(dāng)于中間值得點(diǎn)運(yùn)算。
     
    基于OpenCV的實(shí)現(xiàn)
     
    在生成高斯模板好,其簡(jiǎn)單的實(shí)現(xiàn)和其他的空間濾波器沒有區(qū)別,具體代碼如下:
    void GaussianFilter(const Mat &src, Mat &dst, int ksize, double sigma)
    {
        CV_Assert(src.channels() || src.channels() == 3); // 只處理單通道或者三通道圖像
        const static double pi = 3.1415926;
        // 根據(jù)窗口大小和sigma生成高斯濾波器模板
        // 申請(qǐng)一個(gè)二維數(shù)組,存放生成的高斯模板矩陣
        double **templateMatrix = new double*[ksize];
        for (int i = 0; i < ksize; i++)
            templateMatrix[i] = new double[ksize];
        int origin = ksize / 2; // 以模板的中心為原點(diǎn)
        double x2, y2;
        double sum = 0;
        for (int i = 0; i < ksize; i++)
        {
            x2 = pow(i - origin, 2);
            for (int j = 0; j < ksize; j++)
            {
                y2 = pow(j - origin, 2);
                // 高斯函數(shù)前的常數(shù)可以不用計(jì)算,會(huì)在歸一化的過程中給消去
                double g = exp(-(x2 + y2) / (2 * sigma * sigma));
                sum += g;
                templateMatrix[i][j] = g;
            }
        }
        for (int i = 0; i < ksize; i++)
        {
            for (int j = 0; j < ksize; j++)
            {
                templateMatrix[i][j] /= sum;
                cout << templateMatrix[i][j] << " ";
            }
            cout << endl;
        }
        // 將模板應(yīng)用到圖像中
        int border = ksize / 2;
        copyMakeBorder(src, dst, border, border, border, border, BorderTypes::BORDER_REFLECT);
        int channels = dst.channels();
        int rows = dst.rows - border;
        int cols = dst.cols - border;
        for (int i = border; i < rows; i++)
        {
            for (int j = border; j < cols; j++)
            {
                double sum[3] = { 0 };
                for (int a = -border; a <= border; a++)
                {
                    for (int b = -border; b <= border; b++)
                    {
                        if (channels == 1)
                        {
                            sum[0] += templateMatrix[border + a][border + b] * dst.at<uchar>(i + a, j + b);
                        }
                        else if (channels == 3)
                        {
                            Vec3b rgb = dst.at<Vec3b>(i + a, j + b);
                            auto k = templateMatrix[border + a][border + b];
                            sum[0] += k * rgb[0];
                            sum[1] += k * rgb[1];
                            sum[2] += k * rgb[2];
                        }
                    }
                }
                for (int k = 0; k < channels; k++)
                {
                    if (sum[k] < 0)
                        sum[k] = 0;
                    else if (sum[k] > 255)
                        sum[k] = 255;
                }
                if (channels == 1)
                    dst.at<uchar>(i, j) = static_cast<uchar>(sum[0]);
                else if (channels == 3)
                {
                    Vec3b rgb = { static_cast<uchar>(sum[0]), static_cast<uchar>(sum[1]), static_cast<uchar>(sum[2]) };
                    dst.at<Vec3b>(i, j) = rgb;
                }
            }
        }
        // 釋放模板數(shù)組
        for (int i = 0; i < ksize; i++)
            delete[] templateMatrix[i];
        delete[] templateMatrix;
    }
     
    只處理單通道或者三通道圖像,模板生成后,其濾波(卷積過程)就比較簡(jiǎn)單了。不過,這樣的高斯濾波過程,其循環(huán)運(yùn)算次數(shù)為m×n×ksize2,其中m,n為圖像的尺寸;ksize為高斯濾波器的尺寸。這樣其時(shí)間復(fù)雜度為O(ksize2),隨濾波器的模板的尺寸呈平方增長(zhǎng),當(dāng)高斯濾波器的尺寸較大時(shí),其運(yùn)算效率是極低的。為了,提高濾波的運(yùn)算速度,可以將二維的高斯濾波過程分解開來。
     
    分離實(shí)現(xiàn)高斯濾波
     
    由于高斯函數(shù)的可分離性,尺寸較大的高斯濾波器可以分成兩步進(jìn)行:首先將圖像在水平(豎直)方向與一維高斯函數(shù)進(jìn)行卷積;然后將卷積后的結(jié)果在豎直(水平)方向使用相同的一維高斯函數(shù)得到的模板進(jìn)行卷積運(yùn)算。具體實(shí)現(xiàn)代碼如下:
     
    // 分離的計(jì)算
    void separateGaussianFilter(const Mat &src, Mat &dst, int ksize, double sigma)
    {
        CV_Assert(src.channels()==1 || src.channels() == 3); // 只處理單通道或者三通道圖像
        // 生成一維的高斯濾波模板
        double *matrix = new double[ksize];
        double sum = 0;
        int origin = ksize / 2;
        for (int i = 0; i < ksize; i++)
        {
            // 高斯函數(shù)前的常數(shù)可以不用計(jì)算,會(huì)在歸一化的過程中給消去
            double g = exp(-(i - origin) * (i - origin) / (2 * sigma * sigma));
            sum += g;
            matrix[i] = g;
        }
        // 歸一化
        for (int i = 0; i < ksize; i++)
            matrix[i] /= sum;
        // 將模板應(yīng)用到圖像中
        int border = ksize / 2;
        copyMakeBorder(src, dst, border, border, border, border, BorderTypes::BORDER_REFLECT);
        int channels = dst.channels();
        int rows = dst.rows - border;
        int cols = dst.cols - border;
        // 水平方向
        for (int i = border; i < rows; i++)
        {
            for (int j = border; j < cols; j++)
            {
                double sum[3] = { 0 };
                for (int k = -border; k <= border; k++)
                {
                    if (channels == 1)
                    {
                        sum[0] += matrix[border + k] * dst.at<uchar>(i, j + k); // 行不變,列變化;先做水平方向的卷積
                    }
                    else if (channels == 3)
                    {
                        Vec3b rgb = dst.at<Vec3b>(i, j + k);
                        sum[0] += matrix[border + k] * rgb[0];
                        sum[1] += matrix[border + k] * rgb[1];
                        sum[2] += matrix[border + k] * rgb[2];
                    }
                }
                for (int k = 0; k < channels; k++)
                {
                    if (sum[k] < 0)
                        sum[k] = 0;
                    else if (sum[k] > 255)
                        sum[k] = 255;
                }
                if (channels == 1)
                    dst.at<uchar>(i, j) = static_cast<uchar>(sum[0]);
                else if (channels == 3)
                {
                    Vec3b rgb = { static_cast<uchar>(sum[0]), static_cast<uchar>(sum[1]), static_cast<uchar>(sum[2]) };
                    dst.at<Vec3b>(i, j) = rgb;
                }
            }
        }
        // 豎直方向
        for (int i = border; i < rows; i++)
        {
            for (int j = border; j < cols; j++)
            {
                double sum[3] = { 0 };
                for (int k = -border; k <= border; k++)
                {
                    if (channels == 1)
                    {
                        sum[0] += matrix[border + k] * dst.at<uchar>(i + k, j); // 列不變,行變化;豎直方向的卷積
                    }
                    else if (channels == 3)
                    {
                        Vec3b rgb = dst.at<Vec3b>(i + k, j);
                        sum[0] += matrix[border + k] * rgb[0];
                        sum[1] += matrix[border + k] * rgb[1];
                        sum[2] += matrix[border + k] * rgb[2];
                    }
                }
                for (int k = 0; k < channels; k++)
                {
                    if (sum[k] < 0)
                        sum[k] = 0;
                    else if (sum[k] > 255)
                        sum[k] = 255;
                }
                if (channels == 1)
                    dst.at<uchar>(i, j) = static_cast<uchar>(sum[0]);
                else if (channels == 3)
                {
                    Vec3b rgb = { static_cast<uchar>(sum[0]), static_cast<uchar>(sum[1]), static_cast<uchar>(sum[2]) };
                    dst.at<Vec3b>(i, j) = rgb;
                }
            }
        }
        delete[] matrix;
    }
     
    代碼沒有重構(gòu)較長(zhǎng),不過其實(shí)現(xiàn)原理是比較簡(jiǎn)單的。首先得到一維高斯函數(shù)的模板,在卷積(濾波)的過程中,保持行不變,列變化,在水平方向上做卷積運(yùn)算;接著在上述得到的結(jié)果上,保持列不邊,行變化,在豎直方向上做卷積運(yùn)算。這樣分解開來,算法的時(shí)間復(fù)雜度為O(ksize)O(ksize),運(yùn)算量和濾波器的模板尺寸呈線性增長(zhǎng)。
    在OpenCV也有對(duì)高斯濾波器的封裝GaussianBlur,其聲明如下:
    CV_EXPORTS_W void GaussianBlur( InputArray src, OutputArray dst, Size ksize,
                                    double sigmaX, double sigmaY = 0,
                                    int borderType = BORDER_DEFAULT );
     
    二維高斯函數(shù)的標(biāo)準(zhǔn)差在x和y方向上應(yīng)該分別有一個(gè)標(biāo)準(zhǔn)差,在上面的代碼中一直設(shè)其在x和y方向的標(biāo)準(zhǔn)是相等的,在OpenCV中的高斯濾波器中,可以在x和y方向上設(shè)置不同的標(biāo)準(zhǔn)差。
     
    下圖是自己實(shí)現(xiàn)的高斯濾波器和OpenCV中的GaussianBlur的結(jié)果對(duì)比
     
     
    上圖是5×5,σ=0.8的高斯濾波器,可以看出兩個(gè)實(shí)現(xiàn)得到的結(jié)果沒有很大的區(qū)別。
     
    總結(jié)
    高斯濾波器是一種線性平滑濾波器,其濾波器的模板是對(duì)二維高斯函數(shù)離散得到。由于高斯模板的中心值最大,四周逐漸減小,其濾波后的結(jié)果相對(duì)于均值濾波器來說更好。
     
    高斯濾波器最重要的參數(shù)就是高斯分布的標(biāo)準(zhǔn)差σσ,標(biāo)準(zhǔn)差和高斯濾波器的平滑能力有很大的能力,σσ越大,高斯濾波器的頻帶就較寬,對(duì)圖像的平滑程度就越好。通過調(diào)節(jié)σσ參數(shù),可以平衡對(duì)圖像的噪聲的抑制和對(duì)圖像的模糊。
    特別推薦
    技術(shù)文章更多>>
    技術(shù)白皮書下載更多>>
    熱門搜索
    ?

    關(guān)閉

    ?

    關(guān)閉

    伊人久久综合精品无码AV专区| 久久国产三级无码一区二区| 国产亚洲AV无码AV男人的天堂 | 国产拍拍拍无码视频免费| 亚洲毛片av日韩av无码| 日本无码WWW在线视频观看| 狠狠精品久久久无码中文字幕 | 国产中文在线亚洲精品官网| 亚洲AV永久无码精品成人| 亚洲AV无码一区二三区| 国产激情无码一区二区三区| 亚洲 无码 在线 专区| 亚洲精品无码专区在线在线播放| 亚洲国产精品成人AV无码久久综合影院 | 国产亚洲情侣一区二区无码AV| 日韩欧美成人免费中文字幕| 国产成人亚洲综合无码| 中文字幕无码久久人妻| 中文字字幕在线一本通| 色窝窝无码一区二区三区| 韩国三级中文字幕hd久久精品| 91嫩草国产在线无码观看| 国产成人无码区免费内射一片色欲 | 国产av永久无码天堂影院| 中文字幕无码一区二区免费| 中文字幕乱码无码人妻系列蜜桃| 熟妇无码乱子成人精品| 亚洲精品97久久中文字幕无码 | 国产色无码专区在线观看| 婷婷综合久久中文字幕蜜桃三电影| 精品三级AV无码一区| 国精品无码一区二区三区在线蜜臀| 色综合网天天综合色中文男男| 久久久无码精品亚洲日韩软件| 无码H肉动漫在线观看| 亚洲精品无码久久久久| 日韩中文字幕在线不卡| 狠狠躁天天躁无码中文字幕| 综合无码一区二区三区| 亚洲?v无码国产在丝袜线观看| 国产羞羞的视频在线观看 国产一级无码视频在线 |