<abbr id="kc8ii"><menu id="kc8ii"></menu></abbr>
  • <input id="kc8ii"><tbody id="kc8ii"></tbody></input><table id="kc8ii"><source id="kc8ii"></source></table><kbd id="kc8ii"></kbd>
    <center id="kc8ii"><table id="kc8ii"></table></center>
  • <input id="kc8ii"></input>
    <abbr id="kc8ii"></abbr>
  • <abbr id="kc8ii"></abbr>
  • <center id="kc8ii"><table id="kc8ii"></table></center>
    <abbr id="kc8ii"></abbr>
    你的位置:首頁 > 互連技術(shù) > 正文

    納伏級靈敏度的低噪聲儀表放大器是如何構(gòu)建的?

    發(fā)布時間:2024-12-17 責任編輯:lina

    【導讀】構(gòu)建具有納伏級靈敏度的電壓測量系統(tǒng)會遇到很多設(shè)計挑戰(zhàn),目前較好的運算放大器(比如低噪聲AD797)可以實現(xiàn)低于1nV/ Hz的噪聲性能(1 kHz),但低頻率噪聲限制了可以實現(xiàn)的噪聲性能為大約50 nV p-p(0.1 Hz至10 Hz頻段內(nèi))。


    構(gòu)建具有納伏級靈敏度的電壓測量系統(tǒng)會遇到很多設(shè)計挑戰(zhàn),目前較好的運算放大器(比如低噪聲AD797)可以實現(xiàn)低于1nV/ Hz的噪聲性能(1 kHz),但低頻率噪聲限制了可以實現(xiàn)的噪聲性能為大約50 nV p-p(0.1 Hz至10 Hz頻段內(nèi))。


    過采樣和平均可以降低寬帶噪聲的rms貢獻,但代價是犧牲了更高的數(shù)據(jù)速率,且功耗較高,但過采樣不會降低噪聲頻譜密度,同時它對1/f區(qū)內(nèi)的噪聲無影響。此外,為避免來自后級的噪聲貢獻,就需要采用較大的前端增益,從而降低了系統(tǒng)帶寬。如果沒有隔離,那么所有的接地反彈或干擾都會出現(xiàn)在輸出端,并有可能破壞放大器及其輸入信號的低內(nèi)部噪聲的局面。表現(xiàn)良好的低噪聲儀表放大器可以簡化設(shè)計,并降低共模電壓、電源波動和溫度漂移引起的殘留誤差。


    低噪聲儀表放大器AD8428提供2000 精確增益,具備解決這些問題所必須的一切特性。AD8428 具有5 ppm/°C最大增益漂移、0.3 μV/°C最大失調(diào)電壓漂移、140 dB最小CMRR至60 Hz(120 dB最小值至50 kHz)、130 dB最小PSRR和3.5 MHz帶寬,適合低電平測量系統(tǒng)。引人注目的是該器件的1.3 nV/ Hz電壓噪聲(1 kHz)和40 nV p-p噪聲(0.1 Hz至10 Hz)性能,在極小信號下具有高信噪比。兩個額外的引腳可讓設(shè)計人員改變增益或增加濾波器來降低噪聲帶寬。這些濾波器引腳還提供了降低噪聲的獨特方法。


    使用多個AD8428降低系統(tǒng)噪聲


    圖1 顯示的電路配置可進一步降低系統(tǒng)噪聲。四個AD8428 的輸入和濾波引腳互相短接,降低噪聲至原來的二分之一。可以使用任意一個儀表放大器的輸出來保持低輸出阻抗。此電路可以擴展從而降低噪聲,降低的倍數(shù)為所用放大器數(shù)的平方根。


    納伏級靈敏度的低噪聲儀表放大器是如何構(gòu)建的?

    圖1. 使用四個AD8428 儀表放大器的降噪電路


    每一個AD8428 產(chǎn)生1.3 nV/ Hz折合到輸入(RTI)的典型頻譜噪聲,該噪聲與其他放大器產(chǎn)生的噪聲不相關(guān)。不相關(guān)的噪聲源以方和根(RSS)的方式疊加到濾波器引腳。另一方面,輸入信號為正相關(guān)。每一個AD8428 都響應信號在濾波器引腳上生成相同的電壓,因此連接多個AD8428 不會改變電壓,增益保持為2000。


    噪聲分析


    針對圖2電路簡化版本的分析表明,將兩個AD8428以此方式連接可以降低噪聲,降低的倍數(shù)為2。每一個AD8428的噪聲都可以在+IN引腳上建模。為了確定總噪聲,可以將輸入接地,并使用疊加來組合噪聲源。


    噪聲源en1經(jīng)200差分增益放大,并到達前置放大器A1的輸出端。就這部分的分析而言,輸入接地時,前置放大器A2的輸出端無噪聲。前置放大器A1每個輸出端與相應前置放大器A2輸出端之間的6 kΩ/6 kΩ電阻分頻器可以采用戴維寧等效電路替代:前置放大器A1輸出端噪聲電壓的一半以及一個3 kΩ串聯(lián)電阻。這部分就是降低噪聲的機制。完整的節(jié)點分析表明,響應en1的輸出電壓為1000 × en1。由于對稱,因此響應噪聲電壓en2的輸出電壓為1000 × en2。en1和en2幅度都等于en,并且將作為RSS疊加,導致總輸出噪聲為1414 × en。


    納伏級靈敏度的低噪聲儀表放大器是如何構(gòu)建的?

    圖2. 噪聲分析簡化電路模型


    為了將其折合回輸入端,就必須驗證增益。假設(shè)在+INPUT和–INPUT之間施加差分信號VIN。A1第一級輸出端的差分電壓等于VIN × 200。同樣的電壓出現(xiàn)在前置放大器A2的輸出端,因此沒有分頻信號進入6 kΩ/6 kΩ分頻器,并且節(jié)點分析表明輸出為VIN × 2000。因此,總電壓噪聲RTI為en × 1414/2000,等效于en/2。使用AD8428的1.3 nV/Hz典型噪聲密度,則兩個放大器配置所產(chǎn)生的噪聲密度約為0.92 nV/Hz。


    使用額外的放大器之后,濾波器引腳處的阻抗發(fā)生改變,進一步降低噪聲。例如,如圖1所示使用四個AD8428,則前置放大器輸出端到濾波器引腳之間的6 kΩ電阻后接三個6 kΩ電阻,分別連接每一個無噪聲前置放大器的輸出端。這樣便有效地創(chuàng)建了6 kΩ/2 kΩ電阻分頻器,將噪聲進行四分頻處理。因此,正如預測的那樣,四個放大器的總噪聲便等于en/2。


    進行噪聲與功耗的權(quán)衡取舍


    主要的權(quán)衡取舍來自功耗與噪聲。AD8428具有極高的噪聲-功耗效率,輸入噪聲密度為1.3 nV/Hz(6.8 mA最大電源電流)。為了進行對比,考慮低噪聲AD797運算放大器——該器件需要10.5 mA最大電源電流來達到0.9 nV/Hz。一個分立式G = 2000低噪聲儀表放大器采用兩個AD797運算放大器和一個低功耗差動放大器構(gòu)建,需要使用21 mA以上電流,實現(xiàn)兩個運算放大器和一個30.15 Ω電阻貢獻的1.45 nV/Hz噪聲RTI性能。


    除了很多放大器并聯(lián)連接使用的電源考慮因素外,設(shè)計人員還必須考慮熱環(huán)境。采用±5 V電源的單個AD8428因內(nèi)部功耗會使溫度上升約8°C。如果很多個器件靠近放置,或者放置在封閉空間,則它們之間會互相傳導熱量,需考慮使用熱管理技術(shù)。


    SPICE仿真


    SPICE電路仿真雖然不能代替原型制作,但作為驗證此類電路構(gòu)想的第一步很有用。若要驗證此電路,可以使用ADIsimPE仿真器和AD8428 SPICE宏模型仿真兩個器件并聯(lián)時的電路性能。圖3中的仿真結(jié)果表明該電路的表現(xiàn)與預期一致:增益為2000,噪聲降低30%。


    納伏級靈敏度的低噪聲儀表放大器是如何構(gòu)建的?

    圖3. SPICE仿真結(jié)果


    測量結(jié)果


    在工作臺上測量四個AD8428組成的完整電路。測得的RTI噪聲頻譜密度為0.7 nV/Hz (1 kHz),0.1 Hz至10 Hz范圍內(nèi)具有25 nV p-p。這比很多納伏電壓表的噪聲都要更低。測得的噪聲頻譜和峰峰值噪聲分別如圖4和圖5所示。


    納伏級靈敏度的低噪聲儀表放大器是如何構(gòu)建的?

    圖4. 圖1中電路的電壓噪聲頻譜測量值


    納伏級靈敏度的低噪聲儀表放大器是如何構(gòu)建的?

    圖5. 圖1中電路測得的0.1 Hz至10 Hz RTI噪聲


    結(jié)論


    納伏級靈敏度目標非常難以達成,會遇到很多設(shè)計挑戰(zhàn)。對于需要低噪聲和高增益的系統(tǒng),AD8428儀表放大器具有實現(xiàn)高性能設(shè)計所需的特性。此外,該器件獨特的配置允許將這個不尋常的電路加入其納伏級工具箱內(nèi)。

    本文轉(zhuǎn)載自:亞德諾半導體

     

    免責聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問題,請聯(lián)系小編進行處理。


    我愛方案網(wǎng)


    推薦閱讀:

    利用單片機實現(xiàn)復雜的分立邏輯

    借助熱插拔控制器,確保系統(tǒng)持續(xù)穩(wěn)定運行

    探究電路里0.1uF和0.01uF電容的共存之謎

    為何混合型交流浪涌保護器是浪涌保護首選?

    全局快門圖像傳感器選型指南:關(guān)鍵要點解析

    特別推薦
    技術(shù)文章更多>>
    技術(shù)白皮書下載更多>>
    熱門搜索
    ?

    關(guān)閉

    ?

    關(guān)閉

    乱人伦中文无码视频在线观看| 一本精品中文字幕在线| 中文字幕亚洲乱码熟女一区二区| 免费人妻无码不卡中文字幕系| 亚洲欧美精品一区久久中文字幕| 人妻少妇看A偷人无码精品视频| 中文字幕一二三区| 亚洲av无码一区二区三区乱子伦| 国产乱子伦精品无码专区 | 国产色无码专区在线观看| 无码国产精品一区二区免费vr| 亚洲精品无码专区2| 国产亚洲大尺度无码无码专线 | 日韩中文字幕免费视频| 18禁裸乳无遮挡啪啪无码免费| 中文字幕在线观看| 中文字幕久久久久人妻| 亚洲精品无码激情AV| 92午夜少妇极品福利无码电影| 精品无码国产自产拍在线观看| 欧美麻豆久久久久久中文| 久久久久成人精品无码| 18禁裸乳无遮挡啪啪无码免费 | 无码国模国产在线无码精品国产自在久国产 | 无码人妻一区二区三区在线视频| 亚洲中文字幕无码一区| 亚洲欧美日韩中文在线制服| 亚洲中文字幕无码爆乳av中文| 无码少妇一区二区浪潮av| 免费无码午夜福利片| 免费a级毛片无码免费视频| 国产日产欧洲无码视频无遮挡| 日韩欧国产精品一区综合无码| 精品无码久久久久国产| 刺激无码在线观看精品视频 | 免费无码专区毛片高潮喷水 | www.中文字幕| 少妇无码?V无码专区在线观看| 精品久久久久久无码国产| 无码AV大香线蕉| 日本免费中文字幕|