<abbr id="kc8ii"><menu id="kc8ii"></menu></abbr>
  • <input id="kc8ii"><tbody id="kc8ii"></tbody></input><table id="kc8ii"><source id="kc8ii"></source></table><kbd id="kc8ii"></kbd>
    <center id="kc8ii"><table id="kc8ii"></table></center>
  • <input id="kc8ii"></input>
    <abbr id="kc8ii"></abbr>
  • <abbr id="kc8ii"></abbr>
  • <center id="kc8ii"><table id="kc8ii"></table></center>
    <abbr id="kc8ii"></abbr>
    你的位置:首頁 > 互連技術(shù) > 正文

    峰值功率與平均功率 — 如何選擇合適的轉(zhuǎn)換器

    發(fā)布時間:2022-01-06 責(zé)任編輯:lina

    【導(dǎo)讀】超規(guī)格過度指定 AC/DC 或 DC/DC 轉(zhuǎn)換器來應(yīng)付瞬態(tài)峰值負(fù)載,就好像它們是一個連續(xù)狀態(tài),不但會降低效率同時還可能導(dǎo)致電源供應(yīng)量超出必要范圍。通過了解應(yīng)用的平均、最壞情況和峰值負(fù)載等條件,才能選擇最適當(dāng)?shù)慕鉀Q方案來確保以較低的成本提供可靠的電源電壓。我們的技術(shù)支持工程師或技術(shù)銷售團(tuán)隊(duì)可以為您的應(yīng)用提供最好的建議。


    許多工程師傾向選擇「余量」充足的電源,例如一個應(yīng)用消耗 5W 的功率,那么會選擇 10W 的電源以應(yīng)付最壞的情況。這背后的理由是除了需要一定的安全系數(shù)才能獲得高可靠性,也要確保以后在應(yīng)用電路中添加功能時還有足夠的電源容量來應(yīng)對額外的負(fù)載。這些都是難以反駁的有力論點(diǎn),但它并非總是電源應(yīng)用最有效的方法。


    以 10W AC/DC 電源(例如 RAC10-12SK/277)的典型效率/負(fù)載圖為例:


    峰值功率與平均功率 — 如何選擇合適的轉(zhuǎn)換器

    圖 1:10W AC/DC 轉(zhuǎn)換器的效率/負(fù)載圖


    效率曲線圖顯示負(fù)載超過 20% 時維持平坦,表現(xiàn)很好。但到了 50% 負(fù)載 (5W) 時,效率根據(jù)電源電壓的不同在 77% 到 81% 之間變化(圖 1,橘線)。在 100% 負(fù)載下,無論何種輸入電壓效率都維持在 83% 不變(圖 1,藍(lán)線)。這種差異看起來可能并不明顯,但 77% 的效率就意味著 30% 的供應(yīng)能量被浪費(fèi)為熱量,而 83% 的效率代表只有 20% 被浪費(fèi),大幅降低了耗散功率。 如果該電源替換成同等的 5W電源,例如 RAC05-12SK/277,那么效率將不受電源電壓影響保持在 83%(圖 2)。


    峰值功率與平均功率 — 如何選擇合適的轉(zhuǎn)換器

    圖 2. 5W AC/DC 轉(zhuǎn)換器的效率/負(fù)載圖


    另外,它不僅工作效率更高,5W電源的尺寸也只有10W的一半而且還更便宜:這是雙贏!


    峰值功率與平均功率


    您或許會問,那峰值功率呢?在最壞的連續(xù)負(fù)載條件下,電源要如何應(yīng)對額外的短期峰值過載?


    這里的關(guān)鍵詞是「最壞的情況」。在正常運(yùn)行期間負(fù)載通常會低于功率需求。如果轉(zhuǎn)換器在最壞的負(fù)載情況下連續(xù)工作,它仍然可以輕松處理這樣的功率水平,而實(shí)際上負(fù)載也不會那么高。這為轉(zhuǎn)換器提供了一些「熱余量」來處理高于連續(xù)工作負(fù)載的短期峰值過載。


    例如,RAC05-SK/277 規(guī)格書提供了峰值負(fù)載能力的計(jì)算公式(圖 3):


    峰值功率與平均功率 — 如何選擇合適的轉(zhuǎn)換器

    圖3. 峰值負(fù)載計(jì)算公式(源自規(guī)格書)


    這里的一個重要的數(shù)值是 PP – 峰值輸出功率。RAC05-SK/277 的標(biāo)稱輸出功率為 5W,而實(shí)際上它可以在不觸發(fā)過載保護(hù)的情況下提供 6W。過載如果低于標(biāo)稱負(fù)載的 120%,轉(zhuǎn)換器內(nèi)的器件溫度是限制因子。如果轉(zhuǎn)換器有足夠的時間在過載之后冷卻,它就可以承受多次過載或循環(huán)過載,同時持續(xù)提供穩(wěn)定的輸出電壓。


    如要應(yīng)付非常短暫且嚴(yán)重的過載,可以安裝一個外部輸出電容來提供所需的峰值電流并阻止轉(zhuǎn)換器啟動過載保護(hù)。這對無線連接微控制器等應(yīng)用來說很實(shí)用,雖然傳輸突發(fā)期間的電流峰值發(fā)生的時間既短功率又高,但平均功耗要低得多(圖 4)。在這種情況下,電源可以針對提供平均功率而不是峰值功率來設(shè)計(jì)。


    峰值功率與平均功率 — 如何選擇合適的轉(zhuǎn)換器

    圖 4:支持 WLAN 微控制器的典型電流消耗曲線


    到目前為止我們已經(jīng)探討了 AC/DC 轉(zhuǎn)換器,但也可以用相同的方式分析 DC/DC 轉(zhuǎn)換器。它們之間的區(qū)別在于 DC/DC 轉(zhuǎn)換器是專為在 80-100% 的輸出功率范圍內(nèi)連續(xù)工作所設(shè)計(jì)的,它們的效率曲線在低負(fù)載時會下降得更快,因此低輸出電流并不代表低工作溫度。一般來說,應(yīng)該避免 5W 負(fù)載使用 10W DC/DC 轉(zhuǎn)換器,除非遇到除了降額以外沒有其他方法可以滿足所需的工作溫度范圍的情況。例如,RS12-Z 系列采用緊湊 SIP8 外殼 (21.8mm x 9.6mm) 提供出色的 12W 隔離功率。


    RS12-Z 轉(zhuǎn)換器使用自然對流冷卻和標(biāo)稱 24V 電源可在高達(dá) 75°C 的溫度下全功率工作,而負(fù)載降額 50% 時工作溫度為 -40°C 至 +85°C。負(fù)載減半?yún)s只提供 +10°C 的環(huán)境溫度范圍,這是因?yàn)檗D(zhuǎn)換器不再以最高效率工作。即使如此,僅采用自然對流冷卻就可在全工業(yè)溫度范圍內(nèi)工作的 SIP8 封裝 6W 轉(zhuǎn)換器仍然大幅優(yōu)于競爭對手,因?yàn)楹笳弑仨毲笾趶?qiáng)制空氣冷卻才能提供相同的輸出功率。


    過流保護(hù)


    許多低成本的 AC/DC 和 DC/DC 轉(zhuǎn)換器都有非常基本的輸出過流保護(hù)電路來偵測內(nèi)部電流取樣電阻器的電壓降(圖 5)。


    峰值功率與平均功率 — 如何選擇合適的轉(zhuǎn)換器

    圖 5:基本的過流保護(hù)。電流取樣電阻器兩端的電壓超過 0.7V 時會導(dǎo)通NPN 晶體管并斷開功率 FET 的柵極驅(qū)動。


    這種保護(hù)電路雖然簡單而且作為短路保護(hù)非常有效,但觸發(fā)點(diǎn)在很大程度上是由電流取樣電阻器的容差和 NPN 晶體管的 VBE 閾值電壓而定,造成過流限制的變化很大。因此要確定器件值以便在 100% 負(fù)載下過流保護(hù)不會在環(huán)境工作溫度范圍以上時誤觸發(fā)。這使轉(zhuǎn)換器在室溫下具有非常寬的過載容量 — 通常高達(dá)標(biāo)稱輸出功率的 140%。這種轉(zhuǎn)換器可以在連續(xù)滿載的情況下可靠工作,同時仍有很大的余量來應(yīng)付任何過載狀況。


    這個概述有一個例外,DC/DC 開關(guān)穩(wěn)壓器通常以較高的開關(guān)頻率工作來縮小器件尺寸(降壓轉(zhuǎn)換器增加頻率會減少輸出電感和輸出電容),因此如果遇到突發(fā)峰值過載時會有較少的功率儲備。電流取樣電阻器通常與主控制器 IC 集成在一個芯片上,具有更嚴(yán)格的電阻值容差從而降低過流限制的變化。此外,大多數(shù)開關(guān)穩(wěn)壓器控制器也使用精確的比較器輸出來監(jiān)測逐周期電流限制,而不是依賴不精確的 Vbe 結(jié)點(diǎn)閾值電壓,因此達(dá)到過流或短路保護(hù)的極限時它們會立即關(guān)閉。由此可見,應(yīng)該考慮 DC/DC 開關(guān)穩(wěn)壓器在最壞情況下的峰值負(fù)載條件而非平均負(fù)載。


    結(jié)論


    超規(guī)格過度指定 AC/DC 或 DC/DC 轉(zhuǎn)換器來應(yīng)付瞬態(tài)峰值負(fù)載,就好像它們是一個連續(xù)狀態(tài),不但會降低效率同時還可能導(dǎo)致電源供應(yīng)量超出必要范圍。通過了解應(yīng)用的平均、最壞情況和峰值負(fù)載等條件,才能選擇最適當(dāng)?shù)慕鉀Q方案來確保以較低的成本提供可靠的電源電壓。我們的技術(shù)支持工程師或技術(shù)銷售團(tuán)隊(duì)可以為您的應(yīng)用提供最好的建議。



    免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問題,請電話或者郵箱editor@52solution.com聯(lián)系小編進(jìn)行侵刪。


    推薦閱讀:

    2022廣州(粵港澳大灣區(qū))智慧交通產(chǎn)業(yè)博覽會暨創(chuàng)新發(fā)展論壇

    emotion3D和安森美合作推出創(chuàng)新的駕乘監(jiān)控系統(tǒng)參考設(shè)計(jì)

    安霸推出AI域控制器CV3系列SoC,單芯片即可實(shí)現(xiàn)ADAS及L4級自動駕駛

    電流互感器如何接線

    可控硅原理及電路應(yīng)用解析


    特別推薦
    技術(shù)文章更多>>
    技術(shù)白皮書下載更多>>
    熱門搜索
    ?

    關(guān)閉

    ?

    關(guān)閉

    亚洲精品无码久久久影院相关影片| 惠民福利中文字幕人妻无码乱精品 | 亚洲AV无码一区二区三区牛牛| 日韩精品无码久久久久久| 色婷婷综合久久久久中文一区二区 | 中文精品人人永久免费| 亚洲高清中文字幕免费| YW尤物AV无码国产在线观看| 成在人线av无码免费高潮喷水 | 精品无码久久久久国产| 亚洲AV永久无码精品一百度影院| 国产激情无码一区二区三区| 中文字幕日韩一区二区三区不卡| 日韩av无码中文字幕| 中文字幕久久精品无码| 中文字幕无码无码专区| 中文在线资源天堂WWW| 亚洲动漫精品无码av天堂| 亚洲?v无码国产在丝袜线观看| 人妻少妇看A偷人无码精品| 日韩精品无码免费专区午夜不卡| 免费一区二区无码视频在线播放| 精品人妻系列无码一区二区三区| 亚洲AV无码一区二区三区DV| 中文字幕精品无码一区二区三区| 亚洲av永久无码精品古装片| 99精品久久久久中文字幕| 日本中文字幕免费看| 国产色无码精品视频免费| 在线观看无码AV网站永久免费| 亚洲精品无码永久中文字幕| 精品无码AV无码免费专区| 无码成人精品区在线观看| 无码中文字幕av免费放dvd| 国产做无码视频在线观看浪潮| 欧日韩国产无码专区| 亚洲va中文字幕无码久久不卡| 精品久久久久久久久中文字幕 | 99无码熟妇丰满人妻啪啪| 亚洲AV无码成人专区片在线观看| 无码人妻熟妇AV又粗又大 |