<abbr id="kc8ii"><menu id="kc8ii"></menu></abbr>
  • <input id="kc8ii"><tbody id="kc8ii"></tbody></input><table id="kc8ii"><source id="kc8ii"></source></table><kbd id="kc8ii"></kbd>
    <center id="kc8ii"><table id="kc8ii"></table></center>
  • <input id="kc8ii"></input>
    <abbr id="kc8ii"></abbr>
  • <abbr id="kc8ii"></abbr>
  • <center id="kc8ii"><table id="kc8ii"></table></center>
    <abbr id="kc8ii"></abbr>
    你的位置:首頁 > 互連技術 > 正文

    SiC MOSFET替代Si MOSFET,只有單電源正電壓時如何實現負壓?

    發布時間:2021-12-07 來源:派恩杰半導體 責任編輯:lina

    【導讀】現代工業對電力電子設備提出了很多要求:體積小、重量輕、功率大、發熱少。面對這些要求,Si MOSFET因Si材料自身的限制而一籌莫展。SiC MOSFET因SiC材料的先天優勢開始大顯神通。SiC MOSFET大規模商用唯一的缺點就是價格。


    現代工業對電力電子設備提出了很多要求:體積小、重量輕、功率大、發熱少。面對這些要求,Si MOSFET因Si材料自身的限制而一籌莫展。SiC MOSFET因SiC材料的先天優勢開始大顯神通。SiC MOSFET大規模商用唯一的缺點就是價格。但隨著良率的提升和采用更大尺寸的晶圓,SiC與Si之間的成本差距正在收窄,在整車系統總體成本反而有明顯的優勢。SiC MOSFET替代Si MOSEFET成為越來越多的廠家的新選擇。


    SiC MOSFET的驅動與Si MOSFET的區別之一是驅動電壓不同,傳統Si MOSFET驅動只要單電源正電壓即可,而SiC MOSFET需要單電源正負壓驅動。SiC MOSFET要替代Si MOSFET,就要解決負壓電路如何實現的問題。


    目前,SiC MOSFET多為+15/-3V與+20/-5V電壓驅動。要在Si MOSFET單電源正壓驅動電路中中實現負壓電路,可以在驅動回路中增加少量元件產生所需要的負壓,如需要+15/-3V的驅動電壓,則單電壓需要提供+18V即可,具體有如下兩種方案可以實現。


    方案一:


    用+14V左右的穩壓管Z1加上Z2管正向導通壓降,在開通時候將電壓穩定在+15V左右,這樣在開關管導通時電容C10上就會有3V壓降;開關管關斷時候,驅動芯片內部下管導通加在GS上的電壓為-3V。


    SiC MOSFET替代Si MOSFET,只有單電源正電壓時如何實現負壓?

    圖1


    方案二:


    用3V的穩壓管Z1穩定驅動用的負壓,開通的時候電容C10上穩定3V電壓,則驅動正壓就保持為15V,關斷時候加在GS上電壓就是電容C10的電壓為-3V


    SiC MOSFET替代Si MOSFET,只有單電源正電壓時如何實現負壓?

    圖2


    方案一和方案二的驅動波形如下:


    SiC MOSFET替代Si MOSFET,只有單電源正電壓時如何實現負壓?

    圖3:方案一驅動波形


    SiC MOSFET替代Si MOSFET,只有單電源正電壓時如何實現負壓?

    圖4:方案二驅動波形


    從上述兩張驅動波形圖可以看出:兩個方案均能使用極少的元件實現所需要的驅動負壓,但是器件第一次工作前均為0V,不能在常關狀態下保持穩定負壓,容易被干擾誤開通。針對這一問題,可以通過增加一個電阻R1上拉,在上電后就預先給電容C10進行預充電穩壓在3V,就可以實現未工作時保持負壓,如圖5.


    SiC MOSFET替代Si MOSFET,只有單電源正電壓時如何實現負壓?

    圖5


    綜上,在單電源供電的情況下,只需要對電路進行微小的調整,即可實現SiC MOSFET替代Si MOSFET。


    派恩杰已量產650V-1700V電壓平臺SiC MOSFET,產品由30年車規歷史的SiC代工廠X-FAB生產制造,符合車規標準,在光伏、新能源汽車等應用領域均可替代Si MOSFET和IGBT。


    樣品申請

    sales@pnjsemi.com


    (來源:派恩杰)


    免責聲明:本文為轉載文章,轉載此文目的在于傳遞更多信息,版權歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權問題,請電話或者郵箱editor@52solution.com聯系小編進行侵刪。


    推薦閱讀:

    優化信號鏈的電源系統 — 第3部分:RF收發器

    干貨 | 低成本 MCU 助力電池組系統實現強大功能

    2022第十二屆亞太國際電源產品及技術展覽會

    深度對話:低靜態電流如何改變電池供電設備

    設計低靜態電流 (Iq) 汽車電池反向保護系統的 3 種方法

    特別推薦
    技術文章更多>>
    技術白皮書下載更多>>
    熱門搜索
    ?

    關閉

    ?

    關閉

    日本中文字幕在线视频一区| 亚洲中文字幕无码爆乳av中文| 国产午夜精华无码网站| 亚洲精品无码专区在线播放| 久久无码人妻一区二区三区| 少妇性饥渴无码A区免费 | 无码任你躁久久久久久老妇App | 中文无码人妻有码人妻中文字幕| 男人的天堂无码动漫AV| 亚洲熟妇无码另类久久久| 中文字幕日韩理论在线| 最近最新中文字幕高清免费| 中文字幕精品无码一区二区三区| 人妻少妇无码视频在线| 777久久精品一区二区三区无码| 少妇人妻无码精品视频app| 亚洲精品无码MV在线观看| 亚洲中文字幕无码日韩| 丰满日韩放荡少妇无码视频| 亚洲va中文字幕无码| 亚洲日本中文字幕天堂网| 亚洲成A人片在线观看中文| 中文字幕日韩欧美| 高潮潮喷奶水飞溅视频无码| 韩日美无码精品无码| 亚洲日产无码中文字幕| 亚洲真人无码永久在线| 亚洲AV无码成人专区片在线观看| 无码中文字幕乱在线观看| 无码精品久久久天天影视| 日韩免费人妻AV无码专区蜜桃| 日韩精品无码一本二本三本| 激情无码人妻又粗又大中国人| 国产成A人亚洲精V品无码| 国产乱子伦精品无码码专区| 久久av高潮av无码av喷吹| 亚洲AV无码资源在线观看| 日韩久久久久久中文人妻| 久久久99精品成人片中文字幕| 亚洲视频无码高清在线| 无码日韩精品一区二区免费暖暖 |