提高遲滯,實(shí)現(xiàn)平穩(wěn)的欠壓和過壓閉鎖
發(fā)布時(shí)間:2021-05-01 來(lái)源:Pinkesh Sachdev 責(zé)任編輯:wenwei
【導(dǎo)讀】電阻分壓器可將高電壓衰減至低壓電路能夠承受的電平,且低壓電路不會(huì)出現(xiàn)過載或損壞。在功率路徑控制電路中,電阻分壓器有助于設(shè)置電源欠壓和過壓閉鎖閾值。這種電源電壓驗(yàn)證電路常見于汽車系統(tǒng)、便攜式電池供電儀器儀表以及數(shù)據(jù)處理和通信板中。
欠壓閉鎖(UVLO)可防止下游電子系統(tǒng)在異常低的電源電壓下工作,避免導(dǎo)致系統(tǒng)故障。例如,當(dāng)電源電壓低于規(guī)格要求時(shí),數(shù)字系統(tǒng)可能性能不穩(wěn)定,甚至死機(jī)。當(dāng)電源為可充電電池時(shí),欠壓閉鎖可防止電池因深度放電而受損。過壓閉鎖(OVLO)可保護(hù)系統(tǒng)免受極高電源電壓的影響。由于欠壓和過壓閾值取決于系統(tǒng)的有效工作范圍,因此電阻分壓器可用于通過相同的控制電路設(shè)置自定義閾值。為了能夠在存在電源噪聲或電阻的情況下實(shí)現(xiàn)平穩(wěn)無(wú)顫振閉鎖功能,需要利用閾值遲滯。在討論了簡(jiǎn)單的UVLO/OVLO電路后,本文將介紹一些添加閾值遲滯的簡(jiǎn)單方法,當(dāng)默認(rèn)值不足時(shí),有必要添加閾值遲滯。
欠壓和過壓閉鎖電路
圖1所示為欠壓閉鎖電路(目前無(wú)遲滯)。它有一個(gè)比較器,其負(fù)輸入端具有正基準(zhǔn)電壓(VT)。比較器控制一個(gè)電源開關(guān),用于打開或閉合電源輸入和下游電子系統(tǒng)之間的路徑。比較器的正輸入連接至電阻分壓器。如果電源接通,并從0 V開始上升,比較器輸出起初較低,電源開關(guān)保持關(guān)閉狀態(tài)。當(dāng)比較器正輸入達(dá)到VT時(shí),比較器輸出斷路。此時(shí),底部電阻中的電流為 VT/RB。如果比較器無(wú)任何輸入偏置電流,該電流會(huì)流入RT。因此,當(dāng)比較器斷路時(shí),電源電壓為 VT + RT × VT/RB = VT × (RB + RT)/RB,則UVLO閾值為11 V。低于該閾值時(shí),比較器輸出低電平,將打開電源開關(guān);高于該UVLO閾值時(shí),開關(guān)閉合,電源為系統(tǒng)上電。通過更改RB和RT的比值就可以輕松調(diào)整閾值。絕對(duì)電阻值由預(yù)計(jì)的分壓器偏置電流設(shè)定(本文稍后將詳細(xì)介紹)。要設(shè)置OVLO閾值,只需交換比較器的兩個(gè)輸入(例如,圖2中的下方比較器),這樣高電平輸入就會(huì)迫使比較器輸出低電平,并打開開關(guān)。
圖1.采用電阻分壓器、比較器和電源開關(guān)的電源欠壓閉鎖電路
電源開關(guān)也可通過N溝道或P溝道電源MOSFET來(lái)實(shí)現(xiàn),不過這部分內(nèi)容不是本文討論的重點(diǎn)。之前的討論假設(shè)N溝道MOSFET開關(guān)在柵極電壓為低電平(例如:0 V)時(shí)打開(高電阻)。為了完全閉合(低電阻)N溝道MOSFET,柵極電壓必須比電源電壓至少高出MOSFET閾值電壓,這需要使用電荷泵。保護(hù)控制器 (LTC4365, LTC4367, and LTC4368 )集成了比較器和電荷泵,可驅(qū)動(dòng)N溝道MOSFET,同時(shí)靜態(tài)功耗較低。P溝道MOSFET不需要使用電荷泵,但柵極電壓極性相反;也就是說(shuō),低電壓閉合開關(guān),而高電壓打開P溝道MOSFET開關(guān)。
再來(lái)看電阻分壓器:與使用兩個(gè)單獨(dú)的2電阻串相比,3電阻串可設(shè)置欠壓和過壓閉鎖閾值(圖2),同時(shí)一個(gè)分壓器無(wú)需提供偏置電流。UVLO閾值為:VT × (RB + RM + RT)/(RB + RM) ,而OVLO閾值為: VT × (RB + RM + RT)/RB。AND柵極將兩個(gè)比較器的輸出合并,然后連接至電源開關(guān)。因此,當(dāng)輸入電壓介于欠壓和過壓閾值之間時(shí),電源開關(guān)閉合,為系統(tǒng)供電;否則,開關(guān)打開,斷開系統(tǒng)供電。如果不需要考慮分壓器功耗,則采用單獨(dú)的欠壓和過壓分壓器,分別獨(dú)立調(diào)整閾值會(huì)更靈活。
圖2.采用單個(gè)電阻分壓器的欠壓和過壓閉鎖電路
具有遲滯功能的欠壓和過壓閉鎖電路
在圖1中,如果電源電壓上升緩慢并且有噪聲,或者如果電源本身具有電阻(如電池中的電阻),導(dǎo)致電壓隨負(fù)載電流下降,那么當(dāng)比較器輸入超過其UVLO閾值時(shí),比較器的輸出將在高電平和低電平之間反復(fù)切換。這是因?yàn)?,比較器的正輸入因輸入噪聲或負(fù)載電流通過電源電阻導(dǎo)致的壓降而反復(fù)高于和低于VT閾值。對(duì)于電池供電電路,這可能會(huì)導(dǎo)致永無(wú)休止的振蕩。使用具有遲滯功能的比較器可消除這種顫振,從而使開關(guān)切換更順暢。如圖3所示,遲滯比較器針會(huì)對(duì)上升(例如:VT + 100 mV)和下降輸入(例如:VT – 100 mV)提供不同的閾值。比較器遲滯會(huì)隨RB和RT放大,使電源電平為200 mV × (RB + RT)/RB。如果電源輸入的噪聲或壓降低于該遲滯,就可以消除顫振。如果比較器不存在遲滯或遲滯較低,則有許多方法可以增加或提高遲滯。所有這些方法均在分壓器接頭處采用正反饋,例如:當(dāng)比較器斷路時(shí),正在上升的比較器輸入電平會(huì)更高。為簡(jiǎn)單起見,以下等式假設(shè)比較器本身沒有遲滯。
圖3.通過在分壓器接頭與電源開關(guān)輸出之間連接一個(gè)電阻來(lái)增加欠壓閉鎖閾值遲滯
分壓器與輸出之間的電阻(圖3):
在分壓器接頭(比較器的正輸入)與電源開關(guān)輸出之間增加一個(gè)電阻(RH)。當(dāng)電源電壓從0 V開始上升時(shí),比較器的正輸入低于VT,比較器輸出低電平,電源開關(guān)保持關(guān)閉狀態(tài)。假設(shè)由于系統(tǒng)負(fù)載,開關(guān)輸出為0 V。因此,將RH與RB并聯(lián),用于計(jì)算輸入閾值。上升輸入欠壓閾值為VT × ((RB || RH) + RT)/(RB || RH),其中:RB || RH = RB × RH/(RB + RH)。高于此閾值時(shí),開關(guān)打開,接通系統(tǒng)電源。為了計(jì)算下降輸入欠壓閾值,由于開關(guān)閉合,RH與RT并聯(lián),下降輸入欠壓閾值為:VT × (RB + (RT || RH))/RB,其中 RT || RH = RT × RH/(RT + RH)。如果比較器本身存在一定遲滯,則使用上一個(gè)等式中的上升或下降比較器閾值代替VT?;叵胍幌聢D1中的示例,VT = 1 V且RT = 10 × RB,如果不存在比較器遲滯或RH,則上升和下降閾值為11 V。如圖3所示,增加RH = 100 × RB,則上升輸入閾值為11.1 V,下降閾值為10.09 V;也就是說(shuō),遲滯為1.01 V。該方法對(duì)OVLO無(wú)效,因?yàn)檩斎腚娖缴仙龝?huì)關(guān)閉電源開關(guān),從而導(dǎo)致RH將比較器輸入電平拉低(這樣會(huì)再次打開開關(guān))而不是拉高。
連接開關(guān)電阻(圖4):
增加遲滯的另一個(gè)方法就是連接可以改變底部電阻有效值的開關(guān)電阻。開關(guān)電阻可以并聯(lián)(圖4a),也可以串聯(lián)(圖4b)。我們來(lái)看看圖4a:當(dāng)VIN為低電平(比如說(shuō)為0 V)時(shí),比較器的輸出(UV或節(jié)點(diǎn))為高電平,從而打開N溝道MOSFET M1,并將RH與RB并聯(lián)連接。假設(shè)M1的導(dǎo)通電阻與RH相比可以忽略不計(jì),或可以包含在RH的值中。上升輸入閾值與圖3中的相同:VT × ((RB || RH) + RT)/(RB || RH)。一旦VIN高于該閾值,比較器輸出就會(huì)變?yōu)榈碗娖?,從而關(guān)閉M1,并斷開RH與分壓器的連接。因此,下降輸入閾值與圖1中的相同:VT × (RB + RT)/RB。繼續(xù)我們的示例, VT = 1 V, RT = 10 × RB且 RH = 100 × RB,上升輸入閾值為11.1 V,下降閾值為11 V;也就是說(shuō),RH產(chǎn)生了100 mV的遲滯。該方法和下述方法均可用于欠壓或過壓閉鎖,因?yàn)槠溆猛救Q于比較器輸出打開電源開關(guān)的方式(未顯示)。
圖4.使用開關(guān)(a)分流電阻或電流和(b)串聯(lián)電阻增加欠壓或過壓閉鎖閾值遲滯
圖4b的配置可得出上升輸入閾值為: VT × (RB + RT)/RB,下降輸入閾值為:VT × (RB + RH + RT)/(RB + RH)。圖4中的RH = RB/10 ,因此上升輸入閾值為11 V,下降閾值為10.091 V,也就是說(shuō),遲滯為909 mV。這表明,圖4b配置需要一個(gè)更小的RH才能產(chǎn)生更大的遲滯。
連接電流源(圖4a):
圖4a的電阻RH可以使用電流源IH代替。該方法適用于 LTC4417 和 LTC4418優(yōu)先級(jí)控制器。當(dāng)VIN為低電平時(shí),比較器的高電平輸出使能IH。輸入閾值上升時(shí),比較器的負(fù)輸入為VT。因此,RT中的電流為IH + VT/RB得出的上升閾值為:VT + (IH + VT/RB) × RT = VT × (RB + RT)/RB + IH × RT。一旦VIN高于該閾值,比較器的低電平輸出就會(huì)關(guān)閉IH。因此,下降閾值與圖1中的相同:VT × (RB + RT)/RB,且輸入閾值遲滯為:IH × RT。
電阻分壓器偏置電流
之前的等式假設(shè)比較器輸入端的輸入偏置電流為0,而示例只考慮了電阻比,而未考慮絕對(duì)值。比較器輸入同時(shí)具有輸入失調(diào)電壓(VOS)、參考誤差(也可以與VOS合并),以及輸入偏置電流或漏電流(ILK)。如果分壓器偏置電流(圖1跳變點(diǎn)處的VT/RB)明顯大于輸入漏電流,則零泄漏假設(shè)成立。例如,如果分壓器電流是輸入漏電流的100倍時(shí),漏電流引起的輸入閾值誤差將保持在1%以下。另一種方法是比較漏電流引起的閾值誤差與失調(diào)電壓引起的閾值誤差??紤]比較器的非理想因素,圖1輸入欠壓閾值等式變?yōu)椋?VT ± VOS)× (RB + RT)/RB ± ILK × RT (類似于之前的遲滯電流等式),可重寫為: (VT ± VOS ± ILK × RB × RT/(RB + RT)) × (RB + RT)/RB。輸入漏電流表現(xiàn)為比較器閾值電壓誤差,通過選擇適當(dāng)?shù)碾娮?,可以盡可能降低該誤差(相對(duì)于失調(diào)電壓),也就是, ILK × (RB || RT) < VOS。
舉個(gè)例子,LTC4367欠壓和過壓保護(hù)控制器UV和OV引腳的最大漏電流為±10 nA,而UV/OV引腳比較器的500 mV閾值失調(diào)電壓為±7.5 mV(500 mV的±1.5%)。根據(jù)預(yù)算,±3 mV(500 mV的±0.6%,或小于7.5 mV失調(diào)電壓的一半)漏電流產(chǎn)生的閾值誤差為:RB || RT < 3 mV/10 nA = 300 kΩ。要使用0.5 V比較器閾值設(shè)置11 V輸入欠壓閾值,則要求: RT = RB × 10.5 V/0.5 V = 21 × RB。因此,RB || RT = 21 × RB/22 < 300 kΩ,則RB < 315.7 kΩ。對(duì)于RB來(lái)說(shuō),最接近1%的標(biāo)準(zhǔn)值為309 kΩ,得出的RT為6.49 MΩ。跳變點(diǎn)處的分壓器偏置電流為0.5 V/309 kΩ = 1.62 µA,是10 nA漏電流的162倍。為了在不增加比較器輸入漏電流導(dǎo)致的閾值誤差的情況下盡可能降低分壓器電流,這種分析至關(guān)重要。
結(jié)論
在基于比較器的相同控制電路中,利用電阻分壓器可輕松調(diào)整電源欠壓和過壓閉鎖閾值。電源噪聲或電阻需要閾值遲滯,以防止電源超過閾值時(shí)出現(xiàn)電源開關(guān)打開和關(guān)閉顫振。本文介紹了實(shí)現(xiàn)欠壓和過壓閉鎖遲滯的一些不同方法?;驹硎潜容^器斷路時(shí),在分壓器接頭處會(huì)產(chǎn)生一些正反饋。增加或提高保護(hù)控制器IC遲滯時(shí),有些方法取決于比較器輸出或IC輸出引腳的類似信號(hào)的可用性。選擇電阻值時(shí),應(yīng)注意避免使比較器的輸入漏電流成為閾值誤差的主要來(lái)源。通過電子數(shù)據(jù)表提供所有相關(guān)等式(包括本文中介紹的等式),可供下載。
免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問題,請(qǐng)聯(lián)系小編進(jìn)行處理。
推薦閱讀:
特別推薦
- 音頻放大器的 LLC 設(shè)計(jì)注意事項(xiàng)
- 服務(wù)器電源設(shè)計(jì)中的五大趨勢(shì)
- 電子技術(shù)如何助力高鐵節(jié)能?
- 利用創(chuàng)新FPGA技術(shù):實(shí)現(xiàn)USB解決方案的低功耗、模塊化與小尺寸
- 加速度傳感器不好選型?看這6個(gè)重要參數(shù)!
- 功率器件熱設(shè)計(jì)基礎(chǔ)(十三)——使用熱系數(shù)Ψth(j-top)獲取結(jié)溫信息
- IGBT并聯(lián)設(shè)計(jì)指南,拿下!
技術(shù)文章更多>>
- 意法半導(dǎo)體公布2024年第四季度及全年財(cái)報(bào)
- 芯動(dòng)力神速適配DeepSeek-R1大模型,AI芯片設(shè)計(jì)邁入“快車道”!
- MD&M West展會(huì):Micro Crystal攜創(chuàng)新定時(shí)元件,共繪醫(yī)療科技新藍(lán)圖
- PLC 交流模塊的 TRIAC 輸出故障排除
- 解鎖AI設(shè)計(jì)潛能,ASO.ai如何革新模擬IC設(shè)計(jì)
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
過熱保護(hù)
過壓保護(hù)
焊接設(shè)備
焊錫焊膏
恒溫振蕩器
恒壓變壓器
恒壓穩(wěn)壓器
紅外收發(fā)器
紅外線加熱
厚膜電阻
互連技術(shù)
滑動(dòng)分壓器
滑動(dòng)開關(guān)
輝曄
混合保護(hù)器
混合動(dòng)力汽車
混頻器
霍爾傳感器
機(jī)電元件
基創(chuàng)卓越
激光二極管
激光器
計(jì)步器
繼電器
繼電器接線
減速電機(jī)
檢波二極管
檢波器
檢驗(yàn)設(shè)備
鑒頻器