<abbr id="kc8ii"><menu id="kc8ii"></menu></abbr>
  • <input id="kc8ii"><tbody id="kc8ii"></tbody></input><table id="kc8ii"><source id="kc8ii"></source></table><kbd id="kc8ii"></kbd>
    <center id="kc8ii"><table id="kc8ii"></table></center>
  • <input id="kc8ii"></input>
    <abbr id="kc8ii"></abbr>
  • <abbr id="kc8ii"></abbr>
  • <center id="kc8ii"><table id="kc8ii"></table></center>
    <abbr id="kc8ii"></abbr>
    你的位置:首頁 > 電源管理 > 正文

    如何用隔離式柵極驅(qū)動(dòng)器和LT3999 DC/DC轉(zhuǎn)換器驅(qū)動(dòng)1200 V SiC電源模塊?

    發(fā)布時(shí)間:2019-12-10 來源:Juan Carlos Rodriguez和Martin Murnane, ADI公司 責(zé)任編輯:wenwei

    【導(dǎo)讀】本應(yīng)用筆記展示了ADuM4136 柵極驅(qū)動(dòng)器的優(yōu)勢(shì),這款單通道器件的輸出驅(qū)動(dòng)能力高達(dá)4 A,最大共模瞬變抗擾度(CMTI)為150 kV/μs,并具有包括去飽和保護(hù)的快速故障管理功能。
     
    電動(dòng)汽車、可再生能源和儲(chǔ)能系統(tǒng)等電源發(fā)展技術(shù)的成功取決于電力轉(zhuǎn)換方案能否有效實(shí)施。電力電子轉(zhuǎn)換器的核心包含專用半導(dǎo)體器件和通過柵極驅(qū)動(dòng)器控制這些新型半導(dǎo)體器件開和關(guān)的策略。
     
    目前最先進(jìn)的寬帶器件,如碳化硅(SiC)和氮化鎵(GaN)半導(dǎo)體具有更高的性能,如600 V至2000 V的高電壓額定值、低通道阻抗,以及高達(dá)MHz范圍的快速切換速度。這些提高了柵極驅(qū)動(dòng)器的性能要求,例如,,通過去飽和以得到更短的傳輸延遲和改進(jìn)的短路保護(hù)。
     
    本應(yīng)用筆記展示了ADuM4136 柵極驅(qū)動(dòng)器的優(yōu)勢(shì),這款單通道器件的輸出驅(qū)動(dòng)能力高達(dá)4 A,最大共模瞬變抗擾度(CMTI)為150 kV/μs,并具有包括去飽和保護(hù)的快速故障管理功能。
     
    與Stercom Power Solutions GmbH協(xié)作開發(fā),用于SiC功率器件的柵極驅(qū)動(dòng)單元(GDU)展現(xiàn)了ADuM4136 的性能(參見圖1)。電路板采用雙極性隔離電源供電,其基于使用LT3999 電源驅(qū)動(dòng)器構(gòu)建的推挽式轉(zhuǎn)換器。此單片式高壓、高頻、DC/DC轉(zhuǎn)換驅(qū)動(dòng)器包含具有可編程限流功能的1 A雙開關(guān),提供高達(dá)1 MHz的同步頻率,具有2.7 V至36 V的寬工作范圍,關(guān)斷電流<1 μA。
     
    該解決方案采用SiC金屬氧化物半導(dǎo)體場(chǎng)效應(yīng)晶體管(MOSFET)電源模塊(F23MR12W1M1_ B11)進(jìn)行測(cè)試,SiC模塊提供1200 V的漏源擊穿電壓、22.5 mΩ典型通道電阻和100 A脈沖漏電流能力,最大額定柵極源極電壓為−10 V和+20 V。
     
    本應(yīng)用筆記評(píng)估了該解決方案生成的死區(qū)時(shí)間,并分析研究GDU引入的總傳播輸延遲。通過去飽和檢測(cè),測(cè)試了對(duì)SiC器件的過載和短路保護(hù)功能。
     
    測(cè)試結(jié)果表明,該解決方案響應(yīng)快速。
     
    如何用隔離式柵極驅(qū)動(dòng)器和LT3999 DC/DC轉(zhuǎn)換器驅(qū)動(dòng)1200 V SiC電源模塊?
    圖1.GDU
     
    測(cè)試設(shè)置
     
    用于報(bào)告測(cè)試的完整設(shè)置如圖2所示。在電源模塊兩端提供高壓直流輸入電源(V1)。在輸入端添加1.2 mF、去耦箔電容組(C1)。輸出級(jí)為38 μH電感(L1),在去飽和保護(hù)測(cè)試過程中可將其連接至電源模塊的高邊或低邊。表1總結(jié)了測(cè)試設(shè)置功率器件。
     
    如何用隔離式柵極驅(qū)動(dòng)器和LT3999 DC/DC轉(zhuǎn)換器驅(qū)動(dòng)1200 V SiC電源模塊?
    圖2.測(cè)試設(shè)置原理圖
     
    表1.測(cè)試設(shè)置功率器件
    如何用隔離式柵極驅(qū)動(dòng)器和LT3999 DC/DC轉(zhuǎn)換器驅(qū)動(dòng)1200 V SiC電源模塊?
     
    圖4中所示的GDU接收來自脈沖波發(fā)生器的開關(guān)信號(hào)。這些信號(hào)傳送至死區(qū)時(shí)間產(chǎn)生電路,由LT1720超快、雙通道比較器來實(shí)現(xiàn),比較器的輸出饋入兩個(gè)ADuM4136 器件。ADuM4136 柵極驅(qū)動(dòng)器向柵極端發(fā)送隔離信號(hào),并從電源模塊中的兩個(gè)SiC MOSFET的漏極端接收隔離信號(hào)。柵極驅(qū)動(dòng)器的輸出級(jí)由推挽式轉(zhuǎn)換器提供隔離電源,該轉(zhuǎn)換器使用了由外部5 V直流電源供電的LT3999 DC/DC驅(qū)動(dòng)器。SiC模塊的溫度測(cè)量使用了ADuM4190 高精度隔離放大器。ADuM4190 由LT3080 低壓差(LDO)線性穩(wěn)壓器供電。
     
    圖3展示了實(shí)驗(yàn)連接設(shè)置,表2描述了去飽和保護(hù)測(cè)試中使用的設(shè)備。
     
    表2.測(cè)試設(shè)置設(shè)備
    如何用隔離式柵極驅(qū)動(dòng)器和LT3999 DC/DC轉(zhuǎn)換器驅(qū)動(dòng)1200 V SiC電源模塊?
    如何用隔離式柵極驅(qū)動(dòng)器和LT3999 DC/DC轉(zhuǎn)換器驅(qū)動(dòng)1200 V SiC電源模塊?
    圖3.測(cè)試設(shè)備連接圖
     
    測(cè)試結(jié)果
     
    死區(qū)時(shí)間和傳輸延遲
     
    硬件死區(qū)時(shí)間由GDU引入,以避免半橋電源模塊中出現(xiàn)短路,這在打開或關(guān)閉高邊和低邊SiC MOSFET時(shí)可能會(huì)發(fā)生(請(qǐng)參見圖4)。請(qǐng)注意,延遲的信號(hào)在本文中表示為。
     
    在傳輸延遲測(cè)試中,在底部驅(qū)動(dòng)器的信號(hào)鏈上測(cè)量死區(qū)時(shí)間,其由GDU 信號(hào)的(有效低電平)輸入激發(fā)。死區(qū)時(shí)間通過使用電阻電容(RC)濾波器和LT1720 超快比較器生成。圖5至圖8顯示傳輸延遲測(cè)試的結(jié)果。表3描述了圖5至圖8所示的信號(hào)。
     
    表3.示波器信號(hào)描述(低端驅(qū)動(dòng)器)
    如何用隔離式柵極驅(qū)動(dòng)器和LT3999 DC/DC轉(zhuǎn)換器驅(qū)動(dòng)1200 V SiC電源模塊?
     
    當(dāng)輸入信號(hào)被拉低時(shí),比較器將其延遲輸出狀態(tài)從高變?yōu)榈停绤^(qū)時(shí)間由RC電路確定(~160 ns,參見圖5)。
     
    當(dāng)SiC MOSFET關(guān)斷,且輸入信號(hào)被拉高時(shí),與SiC MOSFET開啟時(shí)測(cè)量的延遲時(shí)間相比,延遲時(shí)間可以忽略不計(jì)(~20 ns),如圖6所示。
     
    開啟和關(guān)斷時(shí)在死區(qū)時(shí)間生成和VGS_B信號(hào)切換后測(cè)得的延遲時(shí)間如圖7和圖8所示。這些延遲時(shí)間比較短暫,分別為66 ns和68 ns,是由ADuM4136。引入的延遲。
     
    開啟時(shí)的總傳輸延遲時(shí)間(死區(qū)時(shí)間加上傳輸延遲)約為226 ns,關(guān)斷時(shí)的總傳輸延遲時(shí)間約為90 ns。表4總結(jié)了傳輸延遲時(shí)間的結(jié)果。
     
    如何用隔離式柵極驅(qū)動(dòng)器和LT3999 DC/DC轉(zhuǎn)換器驅(qū)動(dòng)1200 V SiC電源模塊?
    圖4.GDU信號(hào)鏈
     
    表4.傳播延遲測(cè)試結(jié)果
    如何用隔離式柵極驅(qū)動(dòng)器和LT3999 DC/DC轉(zhuǎn)換器驅(qū)動(dòng)1200 V SiC電源模塊?
     
    如何用隔離式柵極驅(qū)動(dòng)器和LT3999 DC/DC轉(zhuǎn)換器驅(qū)動(dòng)1200 V SiC電源模塊?
    圖5.死區(qū)時(shí)間測(cè)量,器件開啟
     
    如何用隔離式柵極驅(qū)動(dòng)器和LT3999 DC/DC轉(zhuǎn)換器驅(qū)動(dòng)1200 V SiC電源模塊?
    圖6.死區(qū)時(shí)間測(cè)量,器件關(guān)斷
     
    如何用隔離式柵極驅(qū)動(dòng)器和LT3999 DC/DC轉(zhuǎn)換器驅(qū)動(dòng)1200 V SiC電源模塊?
    圖7.延遲時(shí)間測(cè)量,器件開啟
     
    如何用隔離式柵極驅(qū)動(dòng)器和LT3999 DC/DC轉(zhuǎn)換器驅(qū)動(dòng)1200 V SiC電源模塊?
    圖8.延遲時(shí)間測(cè)量,器件關(guān)斷
     
    去飽和保護(hù)
     
    避免驅(qū)動(dòng)開關(guān)高壓短路的去飽和保護(hù)功能集成在ADuM4136 IC上。
     
    在此應(yīng)用中,每個(gè)柵極驅(qū)動(dòng)器間接監(jiān)控MOSFET的漏極至源極引腳的電壓(VDS),檢查并確認(rèn)其DESAT引腳的電壓(VDESAT)不超過介于8.66 V至9.57 V之間的基準(zhǔn)去飽和電壓電平VDESAT_REF(VDESAT_REF = 9.2 V,典型值)。此外,VDESAT的值取決于MOSFET操作和外部電路:兩個(gè)高壓保護(hù)二極管和一個(gè)齊納二極管(參見表6和原理圖部分)。
     
    VDESAT的值可通過以下等式計(jì)算:
     
    VDESAT = VZ + 2 ×VDIODE_DROP + VDS
     
    其中:
     
    VZ是齊納二極管擊穿電壓。
     
    VDIODE_DROP是每個(gè)保護(hù)二極管的正向壓降。
     
    在關(guān)斷期間,DESAT引腳在內(nèi)部被拉低,未發(fā)生飽和事件。此外,MOSFET電壓(VMOSFET)高,且兩個(gè)二極管反向偏置,以保護(hù)DESAT引腳。
     
    在接通期間,DESAT引腳在300 ns內(nèi)部消隱時(shí)間后釋放,兩個(gè)保護(hù)二極管正向偏置,齊納二極管出現(xiàn)故障。在這里,VDESAT電壓是否超出VDESAT_REF值取決于VDS的值。
     
    正常工作時(shí),VDS和VDESAT電壓一直很低。當(dāng)高電流流經(jīng)MOSFET時(shí),VDS電壓增大,導(dǎo)致VDESAT電壓電平升至VDESAT_REF以上。
     
    在這種情況下,ADuM4136 柵極驅(qū)動(dòng)器輸出引腳(VOUT)在200 ns內(nèi)變?yōu)榈碗娖讲⑷ワ柡蚆OSFET,同時(shí)生成延遲<2 µs的信號(hào),使柵極驅(qū)動(dòng)器信號(hào)(VGS)立即鎖定。這些信號(hào)只能由RESET引腳解鎖。
     
    檢測(cè)電壓電平取決于VDS的值,并可通過選擇具有擊穿電壓VZ的合適齊納二極管設(shè)定為任何電平。反過來,可根據(jù)MOSFET制造商數(shù)據(jù)手冊(cè)中所述的VDS來估計(jì)用于去飽和的MOSFET電流(ID)。
     
    用柵極脈沖對(duì)高邊和低邊MOSFET進(jìn)行了兩次去飽和保護(hù)測(cè)試。通過選擇不同的齊納二極管,在每次測(cè)試中測(cè)試了不同的故障電流。測(cè)得的電流值如表4所示,假定最大VDESAT_REF = 9.57 V(最大值),標(biāo)稱VDIODE_DROP = 0.6 V。
     
    低邊測(cè)試
     
    25°C室溫下,通過在100 V至800 V的范圍內(nèi)改變輸入電壓(V1),進(jìn)行了低邊去飽和保護(hù)測(cè)試(參見圖9)。
     
    如何用隔離式柵極驅(qū)動(dòng)器和LT3999 DC/DC轉(zhuǎn)換器驅(qū)動(dòng)1200 V SiC電源模塊?
    圖9.低邊去飽和保護(hù)測(cè)試
     
    圖10至圖17顯示低邊去飽和保護(hù)測(cè)試的結(jié)果。表5說明了圖10至圖17所示的信號(hào)。
     
    表5.示波器信號(hào)描述(低邊測(cè)試)
    如何用隔離式柵極驅(qū)動(dòng)器和LT3999 DC/DC轉(zhuǎn)換器驅(qū)動(dòng)1200 V SiC電源模塊?
     
    在圖16和圖17中,在25°C下對(duì)~125 A的電流觸發(fā)了去飽和保護(hù),并且故障狀態(tài)引腳在延遲約1.34 µs后觸發(fā)為低電平。
     
    對(duì)電源模塊的高邊進(jìn)行了類似測(cè)試,其中在25°C下對(duì)~160 A的電流觸發(fā)了去飽和保護(hù),并在1.32 µs后觸發(fā)故障狀態(tài)引腳為低電平。
    低邊和高邊測(cè)試的結(jié)果表明,柵極驅(qū)動(dòng)解決方案可在<2 µs的高速下,能夠上報(bào)去飽和檢測(cè)的電流值,這個(gè)電流值接近設(shè)定的電流值(參見表4)。
     
    表6.去飽和保護(hù)測(cè)試的計(jì)算條件
    如何用隔離式柵極驅(qū)動(dòng)器和LT3999 DC/DC轉(zhuǎn)換器驅(qū)動(dòng)1200 V SiC電源模塊?
     
    如何用隔離式柵極驅(qū)動(dòng)器和LT3999 DC/DC轉(zhuǎn)換器驅(qū)動(dòng)1200 V SiC電源模塊?
    圖10.低邊測(cè)試,V1 = 100 V,無故障
     
    如何用隔離式柵極驅(qū)動(dòng)器和LT3999 DC/DC轉(zhuǎn)換器驅(qū)動(dòng)1200 V SiC電源模塊?
    圖11.低邊測(cè)試,V1 = 200 V,無故障
     
    如何用隔離式柵極驅(qū)動(dòng)器和LT3999 DC/DC轉(zhuǎn)換器驅(qū)動(dòng)1200 V SiC電源模塊?
    圖12.低邊測(cè)試,V1 = 300 V,無故障
     
    如何用隔離式柵極驅(qū)動(dòng)器和LT3999 DC/DC轉(zhuǎn)換器驅(qū)動(dòng)1200 V SiC電源模塊?
    圖13.低邊測(cè)試,V1 = 400 V,無故障
     
    如何用隔離式柵極驅(qū)動(dòng)器和LT3999 DC/DC轉(zhuǎn)換器驅(qū)動(dòng)1200 V SiC電源模塊?
    圖14.低邊測(cè)試,V1 = 500 V,無故障
     
    如何用隔離式柵極驅(qū)動(dòng)器和LT3999 DC/DC轉(zhuǎn)換器驅(qū)動(dòng)1200 V SiC電源模塊?
    圖15.低邊測(cè)試,V1 = 600 V,無故障
     
    如何用隔離式柵極驅(qū)動(dòng)器和LT3999 DC/DC轉(zhuǎn)換器驅(qū)動(dòng)1200 V SiC電源模塊?
    圖16.低邊測(cè)試,V1 = 800 V,檢測(cè)到故障
     
    如何用隔離式柵極驅(qū)動(dòng)器和LT3999 DC/DC轉(zhuǎn)換器驅(qū)動(dòng)1200 V SiC電源模塊?
    圖17.低邊測(cè)試,V1 = 800 V,檢測(cè)到故障(放大)
     
    原理圖
     
    圖18至圖20顯示ADuM4136 柵極驅(qū)動(dòng)器板的原理
     
    如何用隔離式柵極驅(qū)動(dòng)器和LT3999 DC/DC轉(zhuǎn)換器驅(qū)動(dòng)1200 V SiC電源模塊?
    圖18.ADuM4136 柵極驅(qū)動(dòng)板原理圖(初級(jí)端)
     
    http://www.77uud.com/art/artinfo/id/80037262
    圖19.ADuM4136 柵極驅(qū)動(dòng)板原理圖(隔離電源和高邊柵極信號(hào))
     
    http://www.77uud.com/art/artinfo/id/80037262
    圖20.ADuM4136 柵極驅(qū)動(dòng)板原理圖(隔離電源和低邊柵極信號(hào))
     
    結(jié)論
     
    ADuM4136 柵極驅(qū)動(dòng)器能夠通過去飽和保護(hù)上報(bào)短傳輸延遲和快速過流故障。這些優(yōu)勢(shì)結(jié)合適當(dāng)?shù)耐獠侩娐吩O(shè)計(jì),可滿足使用SiC和GaN等先進(jìn)寬禁帶半導(dǎo)體器件應(yīng)用的嚴(yán)格要求。
     
    本應(yīng)用筆記中的測(cè)試結(jié)果是全柵極驅(qū)動(dòng)解決方案在高電壓下驅(qū)動(dòng)SiC MOSFET模塊的數(shù)據(jù),并通過去飽和保護(hù)功能提供超快響應(yīng)和相應(yīng)的故障管理。此柵極驅(qū)動(dòng)解決方案由LT3999,構(gòu)建的緊湊、低噪聲功率轉(zhuǎn)換器供電,其提供具有適當(dāng)電壓電平的隔離電源以及低關(guān)斷電流和軟啟動(dòng)功能。
     
     
    推薦閱讀:
     
    陷波濾波器能有效降低放大器峰值并提高增益平坦度
    雙AMR電機(jī)位置傳感器,適用于安全性至關(guān)重要的應(yīng)用
    為什么超低阻抗SiC FET受歡迎?它能使系統(tǒng)冷卻運(yùn)行!
    粉紅還有爆米花,5大常見噪聲你弄懂沒?
    輪式機(jī)器人可以應(yīng)對(duì)新的挑戰(zhàn)和功能
    特別推薦
    技術(shù)文章更多>>
    技術(shù)白皮書下載更多>>
    熱門搜索
    ?

    關(guān)閉

    ?

    關(guān)閉

    日韩av无码一区二区三区| 国产a级理论片无码老男人| 久久久久久久亚洲Av无码| 综合无码一区二区三区| 亚洲欧美在线一区中文字幕 | 日本一区二区三区不卡视频中文字幕| 中文字幕无码无码专区| 在线看福利中文影院| 伊人久久综合无码成人网| 亚洲精品国产日韩无码AV永久免费网 | 亚洲AV无码一区二区一二区 | 自拍中文精品无码| 精品久久久久久无码中文野结衣| 精品久久久久久久中文字幕| 东京热无码av一区二区| 中文精品99久久国产| 无码色AV一二区在线播放| 亚洲精品无码午夜福利中文字幕 | 精品久久久久久无码中文野结衣| 久久久久久国产精品无码下载| 亚洲熟妇无码八V在线播放 | AV无码久久久久不卡蜜桃| 中文字幕无码高清晰 | 亚洲欧美日韩另类中文字幕组| 亚洲av无码乱码在线观看野外| 无码国产精成人午夜视频一区二区 | 痴汉中文字幕视频一区| 国产午夜精品无码| 国产亚洲精久久久久久无码77777| 中国少妇无码专区| AV无码久久久久不卡蜜桃| 午夜福利av无码一区二区| 中文字幕欧美日本亚洲| 日韩乱码人妻无码系列中文字幕| 99精品人妻无码专区在线视频区| 曰韩人妻无码一区二区三区综合部| 精品亚洲欧美中文字幕在线看 | 精品人妻无码一区二区色欲产成人 | 中文字幕在线视频第一页| 最好看2019高清中文字幕| 亚洲AV中文无码字幕色三|