<abbr id="kc8ii"><menu id="kc8ii"></menu></abbr>
  • <input id="kc8ii"><tbody id="kc8ii"></tbody></input><table id="kc8ii"><source id="kc8ii"></source></table><kbd id="kc8ii"></kbd>
    <center id="kc8ii"><table id="kc8ii"></table></center>
  • <input id="kc8ii"></input>
    <abbr id="kc8ii"></abbr>
  • <abbr id="kc8ii"></abbr>
  • <center id="kc8ii"><table id="kc8ii"></table></center>
    <abbr id="kc8ii"></abbr>
    你的位置:首頁 > 電源管理 > 正文

    解析三菱電機6.5kV全SiC功率模塊

    發(fā)布時間:2018-09-14 責任編輯:wenwei

    【導讀】本文介紹了6.5kV新型全SiC MOSFET功率模塊的內(nèi)部結(jié)構(gòu)和電氣特性,相對于傳統(tǒng)的Si IGBT模塊、傳統(tǒng)全SiC MOSFET功率模塊,新型全SiC MOSFET功率模塊在靜態(tài)特性、動態(tài)特性和損耗方面優(yōu)勢明顯。
     
    三菱電機開發(fā)了首款6.5kV全SiC(Silicon Carbide)功率模塊,采用高絕緣耐壓HV100標準封裝(100mm&Iacute;140mm)。通過電磁仿真和電路仿真,優(yōu)化了HV100封裝的內(nèi)部設(shè)計,并通過實際試驗驗證了穩(wěn)定的電氣特性。6.5kV HV100全SiC功率模塊為了提高功率密度,將SiC SBD(Schottky Barrier Diode)與SiC MOSFET芯片集成在一起。
     
    在續(xù)流時,集成的SiC SBD會導通,而SiC MOSFET的寄生體二極管不會導通,所以避免了雙極性退化效應(yīng)發(fā)生。本文對比了Si IGBT功率模塊(Si IGBT芯片和Si二極管芯片)、傳統(tǒng)全SiC MOSFET功率模塊(SiC MOSFET芯片,無外置SBD)和新型全SiC MOSFET功率模塊(SiC MOSFET和SiC SBD集成在同一個芯片上),結(jié)果表明新型全SiC MOSFET功率模塊在高溫、高頻工況下優(yōu)勢明顯。
     
    1、引 言
     
    SiC材料具有優(yōu)異的物理性能,由此研發(fā)的SiC功率模塊可以增強變流器的性能[1-2]。相對Si芯片,全SiC芯片可以用更小的體積實現(xiàn)更高耐壓、更低損耗,給牽引變流系統(tǒng)和電力傳輸系統(tǒng)的研發(fā)設(shè)計帶來更多便利。3.3kV全SiC功率模塊已經(jīng)在牽引變流器中得到應(yīng)用,有著顯著的節(jié)能、減小變流器體積和重量等作用[3-4]。6.5kV Si IGBT模塊已經(jīng)用于高鐵和電力傳輸系統(tǒng),這些市場期待6.5kV SiC功率模塊能帶來更多好處。基于此,三菱電機開發(fā)了6.5kV全SiC MOSFET功率模塊[5-7],其采用HV100標準封裝[8],如圖1所示。這個封裝為方便并聯(lián)應(yīng)用而設(shè)計,電氣穩(wěn)定性顯得尤為重要。
     
    解析三菱電機6.5kV全SiC功率模塊
     
    本文介紹了6.5kV新型全SiC MOSFET功率模塊的內(nèi)部結(jié)構(gòu)和電氣特性,相對于傳統(tǒng)的Si IGBT模塊、傳統(tǒng)全SiC MOSFET功率模塊,新型全SiC MOSFET功率模塊在靜態(tài)特性、動態(tài)特性和損耗方面優(yōu)勢明顯。
     
    2、6.5kV新型SiC MOSFET功率模塊特性
     
    2.1  集成SiC SBD的SiC-MOSFET芯片特性
     
    HV100封裝6.5kV新型全SiC MOSFET功率模塊采用SiC MOSFET和SiC SBD一體化芯片技術(shù),最高工作結(jié)溫可達175℃。
     
    模塊設(shè)計中的一個重要難點是避免SiC MOSFET的寄生體二極管(PIN二極管)導通,一旦PIN二極管中有少子(空穴)電流流向二極管的陰極(SiC MOSFET的漏極),因為SiC芯片外延層特性,雙極性退化效應(yīng)發(fā)生的可能性就會增加。在續(xù)流狀態(tài)下,SiC SBD的正向飽和壓降在全電流范圍內(nèi)比SiC MOSFET的寄生體二極管要低。
     
    獨立放置的SiC MOSFET 和SiC SBD芯片如圖2(a)所示,SiC SBD的面積是SiC MOSFET芯片面積的3倍;如果將SiC SBD集成在SiC MOSFET芯片上面,如圖2(b)所示,總面積是單個SiC MOSFET芯片面積的1.05倍。集成在SiC MOSFET芯片上面的SiC SBD采用垂直元胞結(jié)構(gòu),在續(xù)流時承載全部反向電流,同時使SiC MOSFET芯片的寄生體二極管不流過電流,從而消除雙極性退化效應(yīng)。如圖2所示,由于芯片面積減小,模塊整體體積就可以減小。相對于傳統(tǒng)的Si IGBT模塊和傳統(tǒng)全SiC MOSFET功率模塊,采用相同HV100封裝的新型全SiC MOSFET功率模塊可以實現(xiàn)業(yè)界最高的功率密度。
     
    解析三菱電機6.5kV全SiC功率模塊
     
    2.2  新型SiC MOSFET功率模塊的優(yōu)化設(shè)計
     
    6.5kV新型全SiC MOSFET功率模塊內(nèi)部采用半橋拓撲,一般的大功率應(yīng)用可以采用并聯(lián)連接來提高輸出功率。高電壓功率模塊在高頻下運行,需要考慮模塊自身的寄生電容、寄生電感和寄生阻抗等。3D電磁仿真是驗證內(nèi)部封裝結(jié)構(gòu)和芯片布局的一種有效方法。電磁干擾可能帶來三種不良的影響:一是開關(guān)過程中的電流反饋;二是上、下橋臂開關(guān)特性不一致;三是柵極電壓振蕩。電磁干擾會增加模塊內(nèi)部功率芯片布置、綁定線連接及其他電氣結(jié)構(gòu)設(shè)計的復雜性。
     
    我們構(gòu)建了6.5kV新型全SiC MOSFET功率模塊的內(nèi)部等效電路和芯片模型,通過3D電磁仿真和電路仿真,驗證了功率模塊設(shè)計的合理性。
     
    2.2.1
     
    優(yōu)化開關(guān)速度
     
    如果在模塊封裝設(shè)計時沒有考慮電磁干擾,在實際工況中,就會產(chǎn)生開關(guān)過程中的電流反饋,使芯片的固有開關(guān)速度發(fā)生變化,進而可能造成上橋臂和下橋臂的開關(guān)速度不一致。負的電流反饋可以降低芯片的開關(guān)速度,導致芯片的開關(guān)損耗增加,因此開關(guān)速度的不平衡可以導致模塊內(nèi)部各個芯片的熱分布不一致。圖3顯示了6.5kV新型全SiC MOSFET功率模塊在有電磁干擾和無電磁干擾下的仿真開通波形,從圖中可以看出,通過優(yōu)化內(nèi)部電氣設(shè)計,電磁干擾對6.5kV新型全SiC MOSFET功率模塊沒有影響。圖4為6.5kV新型全SiC MOSFET功率模塊上橋臂和下橋臂的仿真開通波形,兩者的波形幾乎完全一樣,在實際測試時也驗證了這一點。
     
    解析三菱電機6.5kV全SiC功率模塊
     
    2.2.2
     
    柵極電壓振蕩抑制
     
    在高電流密度功率模塊中,內(nèi)部有很多功率芯片并聯(lián),寄生電容和寄生電感可能組成復雜的諧振電路,從而可能造成柵極電壓振蕩。柵極電壓振蕩幅度過大,可能損壞柵極。通常可以增大芯片內(nèi)部的門極電阻來達到抑制振蕩的目的,但是增大內(nèi)部門極電阻會造成開關(guān)損耗增加,在設(shè)計模塊時,我們希望內(nèi)部柵極電阻盡可能小。借助仿真手段,在保持小的柵極電阻的情況下,我們通過優(yōu)化內(nèi)部電氣布局很好地抑制了柵極電壓振蕩。
     
    解析三菱電機6.5kV全SiC功率模塊
     
    圖5為6.5kV新型全SiC MOSFET功率模塊在優(yōu)化內(nèi)部設(shè)計之前和優(yōu)化之后的柵極電壓仿真波形。優(yōu)化之前,有一個比較大的振蕩,振幅可達13V。優(yōu)化之后,柵極電壓振蕩得到抑制,幅度只有2V,在實際測試中也驗證了這一點。
     
    2.3  靜態(tài)特性參數(shù)對比
     
    圖6為400A IGBT模塊(從額定電流1000A IGBT轉(zhuǎn)換而來)、400A傳統(tǒng)全SiC MOSFET功率模塊(不含SiC SBD)和400A新型全SiCMOSFET功率模塊通態(tài)壓降對比。在150℃時,SiIGBT的通態(tài)電阻比較低,這是因為Si IGBT是雙極性器件,而SiC MOSFET屬于單極性器件。400A傳統(tǒng)全SiC MOSFET功率模塊(不含SiC SBD)和400A新型全SiCMOSFET功率模塊芯片面積幾乎相同,所以在全溫度范圍內(nèi)其通態(tài)電阻也幾乎相同。
     
    二極管正向壓降對比如圖7和圖8所示。圖7是各模塊件在非同步整流狀態(tài)(MOSFET不導通)下二極管電流特性的對比,圖8為各模塊在同步整流狀態(tài)(MOSFET導通)下二極管電流特性的對比。從圖中可以看出,在非同步整流狀態(tài)下,傳統(tǒng)SiC-MOSFET功率模塊的表現(xiàn)呈非線性特性;而新型全SiC MOSFET功率模塊,無論在同步整流還是非同步整流時,都呈線性特征。由上,無論在MOSFET導通狀態(tài),還是在二極管導通狀態(tài),全SiC MOSFET功率模塊都表現(xiàn)出單極性器件的特性。
     
    解析三菱電機6.5kV全SiC功率模塊
     
    解析三菱電機6.5kV全SiC功率模塊
     
    2.4  動態(tài)特性參數(shù)對比
     
    圖9為新型全SiC MOSFET功率模塊在3600V/400A 在室溫和高溫下(175℃)的開通波形對比,從圖中可以看出,經(jīng)過內(nèi)部結(jié)構(gòu)優(yōu)化的新型全SiC MOSFET功率模塊上橋臂和下橋臂在室溫和高溫下的開關(guān)速度幾乎完全一樣,所以其室溫和高溫下的損耗也幾乎一樣。一般來說,隨著溫度的增加(載流子壽命增加),反向恢復電流也會隨之增加,但是如圖9所示,高溫下的反向恢復電荷(Qrr)相對常溫增加很少。與靜態(tài)特性一樣,新型全SiC MOSFET功率模塊在動態(tài)特性上表現(xiàn)出單極性器件的特性。
     
    解析三菱電機6.5kV全SiC功率模塊
     
    2.5  實測開關(guān)波形和開關(guān)損耗對比
     
    圖10為傳統(tǒng)全SiC MOSFET功率模塊和新型全SiC MOSFET功率模塊的開通波形在室溫和175℃下對比,從圖中可以看出在室溫下,兩者波形很接近,但是在175℃下,傳統(tǒng)全SiCMOSFET功率模塊反向恢復電流更大,VDS下降速度更慢。而新型全SiC MOSFET功率模塊因為反向恢復電流小,所以其VDS下降速度更快。同時這些特性表明兩者的開通損耗和反向恢復損耗在室溫下非常接近,但是在高溫下,新型全SiC MOSFET功率模塊的開通損耗和反向恢復損耗相對更小,主要原因是反向恢復時,新型全SiCMOSFET功率模塊的寄生體二極管不導通。
     
    解析三菱電機6.5kV全SiC功率模塊
     
    在175℃時,傳統(tǒng)全SiC MOSFET功率模塊在開通時會有一個比較大的振蕩,而振蕩可能造成電磁干擾,進而影響模塊的安全工作。實際應(yīng)用中,希望這個振蕩越小越好,為了抑制振蕩,可以減緩模塊開關(guān)速度或者增加外部吸收電路。但是對于新型全SiC MOSFET功率模塊,在高溫下振蕩非常小,無需采取額外措施來抑制振蕩。
     
    在高壓全SiC MOSFET功率模塊中,造成以上差異的主要原因是傳統(tǒng)全SiC MOSFET功率模塊有一層厚的外延層,在反向恢復時會產(chǎn)生比較大的反向恢復電流。
     
    圖11為Si IGBT模塊、傳統(tǒng)全SiC MOSFET功率模塊和新型全SiC MOSFET功率模塊的開關(guān)損耗對比(Si IGBT模塊與全SiCMOSFET功率模塊分別設(shè)置在最佳開關(guān)速度)。從圖中可以看出,全SiC MOSFET功率模塊損耗明顯小于Si IGBT模塊。并且,在175℃時,新型全SiC MOSFET功率模塊比傳統(tǒng)全SiC MOSFET功率模塊開通損耗低18%,反向恢復損耗低80%。
     
    解析三菱電機6.5kV全SiC功率模塊
     
    3、損耗對比
     
    在開關(guān)頻率fs=0.5kHz、2kHz和10kHz,PF=0.8,調(diào)制比M=1,母線電壓VCC=3600V,輸出電流IO=200A的工況下,對比了采用Si IGBT模塊(150℃)、傳統(tǒng)全SiC MOSFET功率模塊(175℃)和新型全SiC MOSFET功率模塊(175℃)的逆變器損耗,如圖12所示。從圖中可以看出,在fs=0.5kHz,通態(tài)損耗占很大比例,此時全SiC MOSFET功率模塊比Si IGBT模塊低64%,同時傳統(tǒng)全SiC MOSFET功率模塊和新型全SiC MOSFET功率模塊相差很小。
     
    在fs=2kHz,全SiC MOSFET功率模塊比Si IGBT模塊低85%,而新型全SiC MOSFET功率模塊相對傳統(tǒng)全SiCMOSFET功率模塊低7%。在fs=10kHz,開關(guān)損耗占據(jù)很大比例,此時全SiC MOSFET功率模塊比Si IGBT功率模塊低92%,而新型全SiC MOSFET功率模塊相對傳統(tǒng)全SiCMOSFET功率模塊低16%。從以上可以看出,新型全SiCMOSFET功率模塊更適合高頻、高溫應(yīng)用。
     
    解析三菱電機6.5kV全SiC功率模塊
     
    4、結(jié) 論
     
    三菱電機開發(fā)了業(yè)界首款采用HV100封裝的新型6.5kV全SiC MOSFET功率模塊。通過電磁仿真、電路仿真和實際測試,確認了內(nèi)部電氣設(shè)計的合理性。同時,新型6.5kV全SiC MOSFET功率模塊采用SiC SBD和SiC MOSFET一體化芯片設(shè)計,減小了模塊體積,實現(xiàn)了6.5kV業(yè)界最高的功率密度。通過靜態(tài)測試和動態(tài)測試,確認了新型6.5kV全SiC MOSFET功率模塊無論在SiC MOSFET導通還是SiC SBD導通時都表現(xiàn)出單極性器件的特性,且其SiC SBD在高溫下反向恢復電流小,沒有雙極性退化效應(yīng)。新型6.5kV全SiC MOSFET功率模塊在高溫下導通時VDS下降更快,其導通損耗更小,且沒有振蕩現(xiàn)象發(fā)生。
     
    同時,對比了Si IGBT模塊、傳統(tǒng)全SiC MOSFET功率模塊和新型全SiC MOSFET功率模塊的損耗,在開關(guān)頻率為10kHz時,新型全SiCMOSFET功率模塊的損耗比Si IGBT模塊大概低92%,比傳統(tǒng)全SiC MOSFET功率模塊相對低16%。相對傳統(tǒng)全SiC MOSFET功率模塊,由于SiC MOSFET體二極管與集成的SiC SBD之間反向恢復特性的不同,新型全SiC MOSFET功率模塊在高溫、高頻等應(yīng)用工況下更有優(yōu)勢。
     
     
    推薦閱讀:
     
    工業(yè)過渡:實現(xiàn)可信的工業(yè)自動化
    選擇正確的開關(guān):交流和直流大有不同
    熱電阻四線制、三線制、兩線制的區(qū)別對比分析
    PT100熱電阻三線制和二線制接法區(qū)別
    優(yōu)劣幾何?三角法和TOF 激光雷達大解析!
    要采購開關(guān)么,點這里了解一下價格!
    特別推薦
    技術(shù)文章更多>>
    技術(shù)白皮書下載更多>>
    熱門搜索
    ?

    關(guān)閉

    ?

    關(guān)閉

    中文字幕精品视频在线| 日本妇人成熟免费中文字幕 | 中文字幕视频在线| 2014AV天堂无码一区| 中文无码熟妇人妻AV在线 | 日韩精品无码一区二区三区| 一区二区三区观看免费中文视频在线播放 | 久久ZYZ资源站无码中文动漫| 高清无码v视频日本www| 日韩中文字幕欧美另类视频| 亚洲av无码不卡私人影院| 人妻丰满熟妇av无码区不卡| 久久午夜无码鲁丝片秋霞 | 精品久久久久久无码不卡| 免费无码中文字幕A级毛片| 精品无码国产自产在线观看水浒传| 99精品久久久久中文字幕| 日韩va中文字幕无码电影| 天堂无码在线观看| 国产精品热久久无码av| 亚洲国产中文v高清在线观看| 日韩精品无码中文字幕一区二区| 亚洲国产精品成人AV无码久久综合影院 | 国产综合无码一区二区三区| 国产精品无码午夜福利| 久久久无码人妻精品无码| 无码超乳爆乳中文字幕久久| 亚洲av无码片vr一区二区三区 | 水蜜桃av无码一区二区| 亚洲av无码一区二区三区在线播放 | 日韩专区无码人妻| 亚洲免费日韩无码系列| 亚洲国产精品无码久久久久久曰| 曰韩无码AV片免费播放不卡| 亚洲乱亚洲乱少妇无码| 中出人妻中文字幕无码| 日本中文字幕免费高清视频| 久久精品中文字幕第23页| 一二三四在线观看免费中文在线观看| 亚洲中文字幕伊人久久无码| 亚洲成A人片在线观看无码不卡|